MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #3: Menger’s theorem and network flows

Due Wednesday, November 2nd, 2016, 14:30

1. Let G = (V,E) be a simple graph and let U C V. We define G @&y {v} to be
the graph obtained from G by adding a new vertex v, which is then joined to every
vertex in U. In other words, G &y {v} = (VU {v}, EU{{u,v}:ue U}).

a) Prove that if G = (V, E) is a k-connected simple graph and U C V has size k,
then the graph G @y {v} is k-connected as well.

Solution: Suppose for a contradiction G’ := G &y {v} is not k-connected.
By Menger’s theorem, there exists a vertex cut S C V(G’) of size at most
k — 1. Clearly, if v € S, then G’ — S is actually a subgraph of G with at
least |V| — k — 2 vertices, which is definitely connected (in fact, it is even
2-connected) by the connectivity assumption on G.

Now consider v ¢ S. Let C; and Cs be different connected components of
G’ — S. We claim that both C; and Cy contain a vertex from the set V. If
not, then one of the components, say C7, would contain only the vertex wv.
However, since |U| = k, there is at least one vertex u € U \ S, and this vertex
must be in C; as well; a contradiction.

Let uy € V(C1) NV and up € V(C2) N V. It follows that every path in G
between u; and us have to pass through the set S, which is a contradiction
with G being k-connected.

b) For every integer k > 1, find a simple graph G = (Vi, E)) on at least k + 1
vertices and a vertex-subset U C V}, of size k such that GG, is not k-connected,
however, G, @y {v} is k-connected.

Solution: There was a typo in the original statement — one has to assume k > 1
since the statement is clearly false for k = 1. The points for this part will not be
counted to the regular score. You get a bonus point if you have spotted the mistake
and constructed a counter-example for the case k = 1. You get extra 2 points if you
have constructed the graphs Gy, for any k > 2.

Fix an integer k > 2. Let V := {v1,v2, ..., 041} and let G, := (V, (‘2/) \ {k,k+ 1})
In other words, Gy, is obtained from a complete graph on k41 vertices by removing
one edge. Clearly, this graph is not k-connected because the set {v1,...,vp_1} is a
vertex cut in Gy, of size k — 1. Let U := {2,3,...,vp41}, and G}, := G @y {v}. We
claim G, is k-connected.

Indeed, consider S C V(GY,) a vertex cut in G},. By Menger’s theorem, it is enough
to show |S| > k. First, observe that for any ¢ € {2,3,...,k — 1}, the vertex v; is
connected to every other vertex in G},. Therefore, any vertex cut in G, must contain
all the vertices from {vg,v3,...,v5_1}, so |S| > k — 2. But G, — {va,v3,..., 061},
i.e., the subgraph of G, induced by {vi, v, vky1,v}, is isomorphic to Cy, so |S| >
k — 1. However, if |S| = k — 1, then by the argument above S contains exactly one
vertex from {v1, vk, vg+1,v}. Therefore Gj — S is isomorphic to a path of length
two, a contradiction.



2. Let G = (V, E) be a k-connected simple graph and U, W C V two vertex-subsets,
each of size k. Prove that there exist k pairwise vertex-disjoint paths Py, ... Py such
that for every i € {1,...,k}, the path P; have one endpoint in U and the other
endpoint in W.

Solution: Let G’ := (G &y u) ®w w. By the part (a) of the previous exercise, G’ is
k-connected. Therefore, G’ contains k internally disjoint paths Q1, ..., Qx between
wand w. For every i € {1,...,k}, let P, := Q; — u — w. It follows that these are k
vertex-disjoint paths in G, each with exactly one end in U and the other in W.

3. Let G = (V,E) be a 2-connected simple graph. Show that for any triple of
distinct vertices u,v,w € V there is a path in G from u to v passing through w,
i.e., w is one of the inner vertices of the path.

Solution: Let G’ := G @y z for U := {u,v}. Again, the first part of Exercise 1
yields that G’ is 2-connected. Hence G’ contains 2 internally vertex-disjoint paths
Q1 and @2 between z and w. Taking their union and removing the vertex z yields
the desired path between u and v that passes through w.

4. Let G = (V, E) be a 2-connected simple graph and v € V' a vertex of G. Prove
that there exists a vertex u € V such that {u,v} € F and the graph G —u — v is
connected.

Solution: Let U be the set of neighbors of v in G. Let T be a connected subgraph
of G — v with the minimum number of edges such that U C V(T). It is easy to
see that T is a tree, and that every leaf of T" is a neighbor of v. Let u be a leaf
of T. Then T — u is connected. Suppose for a contradiction that G — u — v is not
connected and consider a component C' of G — u — v which does not contain T — w.
Thus C' contains no neighbor of v and so it is a connected component of G — u. It
follows that G — u is not connected, contradicting 2-connectivity of G.

5. Let G = (V,E) be a directed graph (digraph) and for each edge e € E, let
@(e) > 0 be a non-negative integer. Show that if for every vertex v

Y odle)= D> dle),
e€d—(v) e€dt (v)
then there is a collection of directed cycles C1, ..., C (possibly with repetition) so
that for every edge e of GG, it holds that
Hi:1<i<k, ec E(C)} = ¢(e).

Solution: Induction on S := ZeeE(G) ¢(e). Base case: S = 0 is trivial. For the
induction step, it suffices to find a directed cycle C in G so that ¢(e) > 1 for every
edge e € F(G), as one can then apply the induction hypothesis to

oy L) ole), if e ¢ E(C)
¢le) = {¢(e) _1, ifee E(C)

Let e be an edge of G with ¢(e) > 1, a tail u and a head v. Then ¢ restricted to
E(G) — e is a v-u-flow of value 1. By Lemma 11.3 from the lecture notes, there
exists a directed path P in G — e so that ¢ is positive on every edge of the path.
The path P together with e forms the desired cycle.



