1. Let $G = (V, E)$ be a simple graph and let $U \subseteq V$. We define $G \oplus_U \{v\}$ to be the graph obtained from G by adding a new vertex v, which is then joined to every vertex in U. In other words, $G \oplus_U \{v\} = (V \cup \{v\}, E \cup \{(u, v) : u \in U\})$.

a) Prove that if $G = (V, E)$ is a k-connected simple graph and $U \subseteq V$ has size k, then the graph $G \oplus_U \{v\}$ is k-connected as well.

Solution: Suppose for a contradiction $G' := G \oplus_U \{v\}$ is not k-connected. By Menger’s theorem, there exists a vertex cut $S \subseteq V(G')$ of size at most $k - 1$. Clearly, if $v \in S$, then $G' - S$ is actually a subgraph of G with at least $|V| - k - 2$ vertices, which is definitely connected (in fact, it is even 2-connected) by the connectivity assumption on G.

Now consider $v \notin S$. Let C_1 and C_2 be different connected components of $G' - S$. We claim that both C_1 and C_2 contain a vertex from the set V. If not, then one of the components, say C_1, would contain only the vertex v. However, since $|U| = k$, there is at least one vertex $u \in U \setminus S$, and this vertex must be in C_1 as well; a contradiction.

Let $u_1 \in V(C_1) \cap V$ and $u_2 \in V(C_2) \cap V$. It follows that every path in G between u_1 and u_2 have to pass through the set S, which is a contradiction with G being k-connected.

b) For every integer $k > 1$, find a simple graph $G_k = (V_k, E_k)$ on at least $k + 1$ vertices and a vertex-subset $U \subseteq V_k$ of size k such that G_k is not k-connected, however, $G_k \oplus_U \{v\}$ is k-connected.

Solution: There was a typo in the original statement – one has to assume $k > 1$ since the statement is clearly false for $k = 1$. The points for this part will not be counted to the regular score. You get a bonus point if you have spotted the mistake and constructed a counter-example for the case $k = 1$. You get extra 2 points if you have constructed the graphs G_k for any $k \geq 2$.

Fix an integer $k \geq 2$. Let $V := \{v_1, v_2, \ldots, v_{k+1}\}$ and let $G_k := \left(V, \left(\begin{array}{c} V \\ 2 \end{array}\right) \setminus \{k, k+1\}\right)$.

In other words, G_k is obtained from a complete graph on $k + 1$ vertices by removing one edge. Clearly, this graph is not k-connected because the set $\{v_1, \ldots, v_{k-1}\}$ is a vertex cut in G_k of size $k - 1$. Let $U := \{2, 3, \ldots, v_{k+1}\}$, and $G_k' := G_k \oplus_U \{v\}$. We claim G_k' is k-connected.

Indeed, consider $S \subseteq V(G_k')$ a vertex cut in G_k'. By Menger’s theorem, it is enough to show $|S| \geq k$. First, observe that for any $i \in \{2, 3, \ldots, k-1\}$, the vertex v_i is connected to every other vertex in G_k'. Therefore, any vertex cut in G_k' must contain all the vertices from $\{v_2, v_3, \ldots, v_{k-1}\}$, so $|S| \geq k - 2$. But $G_k' - \{v_2, v_3, \ldots, v_{k-1}\}$, i.e., the subgraph of G_k' induced by $\{v_1, v_k, v_{k+1}, v\}$, is isomorphic to C_4, so $|S| \geq k - 1$. However, if $|S| = k - 1$, then by the argument above S contains exactly one vertex from $\{v_1, v_k, v_{k+1}, v\}$. Therefore $G_k' - S$ is isomorphic to a path of length two, a contradiction.
2. Let \(G = (V, E) \) be a \(k \)-connected simple graph and \(U, W \subseteq V \) two vertex-subsets, each of size \(k \). Prove that there exist \(k \) pairwise vertex-disjoint paths \(P_1, \ldots, P_k \) such that for every \(i \in \{1, \ldots, k\} \), the path \(P_i \) have one endpoint in \(U \) and the other endpoint in \(W \).

Solution: Let \(G' := (G \cup_U u) \cup_W w \). By the part (a) of the previous exercise, \(G' \) is \(k \)-connected. Therefore, \(G' \) contains \(k \) internally disjoint paths \(Q_1, \ldots, Q_k \) between \(u \) and \(w \). For every \(i \in \{1, \ldots, k\} \), let \(P_i := Q_i - u - w \). It follows that these are \(k \) vertex-disjoint paths in \(G \), each with exactly one end in \(U \) and the other in \(W \).

3. Let \(G = (V, E) \) be a 2-connected simple graph. Show that for any triple of distinct vertices \(u, v, w \in V \) there is a path in \(G \) from \(u \) to \(v \) passing through \(w \), i.e., \(w \) is one of the inner vertices of the path.

Solution: Let \(G' := G \oplus_U z \) for \(U := \{u, v\} \). Again, the first part of Exercise 1 yields that \(G' \) is 2-connected. Hence \(G' \) contains 2 internally vertex-disjoint paths \(Q_1 \) and \(Q_2 \) between \(z \) and \(w \). Taking their union and removing the vertex \(z \) yields the desired path between \(u \) and \(v \) that passes through \(w \).

4. Let \(G = (V, E) \) be a 2-connected simple graph and \(v \in V \) a vertex of \(G \). Prove that there exists a vertex \(u \in V \) such that \(\{u, v\} \in E \) and the graph \(G - u - v \) is connected.

Solution: Let \(U \) be the set of neighbors of \(v \) in \(G \). Let \(T \) be a connected subgraph of \(G - v \) with the minimum number of edges such that \(U \subseteq V(T) \). It is easy to see that \(T \) is a tree, and that every leaf of \(T \) is a neighbor of \(v \). Let \(u \) be a leaf of \(T \). Then \(T - u \) is connected. Suppose for a contradiction that \(G - u - v \) is not connected and consider a component \(C \) of \(G - u - v \) which does not contain \(T - u \). Thus \(C \) contains no neighbor of \(v \) and so it is a connected component of \(G - u \). It follows that \(G - u \) is not connected, contradicting 2-connectivity of \(G \).

5. Let \(G = (V, E) \) be a directed graph (digraph) and for each edge \(e \in E \), let \(\phi(e) \geq 0 \) be a non-negative integer. Show that if for every vertex \(v \)

\[
\sum_{e \in \partial^-(v)} \phi(e) = \sum_{e \in \partial^+(v)} \phi(e),
\]

then there is a collection of directed cycles \(C_1, \ldots, C_k \) (possibly with repetition) so that for every edge \(e \) of \(G \), it holds that

\[
\{i : 1 \leq i \leq k, \ e \in E(C_i)\} = \phi(e).
\]

Solution: Induction on \(S := \sum_{e \in E(G)} \phi(e) \). Base case: \(S = 0 \) is trivial. For the induction step, it suffices to find a directed cycle \(C \) in \(G \) so that \(\phi(e) \geq 1 \) for every edge \(e \in E(G) \), as one can then apply the induction hypothesis to

\[
\phi'(e) := \begin{cases}
\phi(e), & \text{if } e \notin E(C) \\
\phi(e) - 1, & \text{if } e \in E(C)
\end{cases}
\]

Let \(e \) be an edge of \(G \) with \(\phi(e) \geq 1 \), a tail \(u \) and a head \(v \). Then \(\phi \) restricted to \(E(G) - e \) is a \(u-v \)-flow of value 1. By Lemma 11.3 from the lecture notes, there exists a directed path \(P \) in \(G - e \) so that \(\phi \) is positive on every edge of the path. The path \(P \) together with \(e \) forms the desired cycle.