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Figure 1: The three labelled trees that arise from a path of length 2.

A labelled tree T is a graph G that is a tree together with the labelling
of its vertices, i.e., a bijection from V (G) to {1, 2, . . . , n}. See an example
of labelled trees in Figure 1. The purpose of this note is to determine the
total number of labelled trees on n vertices, which we denote by tn.

Theorem 1 (Cayley’s formula). For every n ∈ N, the number of labelled
trees on n vertices tn is equal to nn−2.

In order to determine the formula for tn, we consider a closely related
problem of counting the number of so-called rooted labelled trees. A rooted
labelled tree is a labelled tree T together with one marked vertex v ∈ V (T ),
which we call the root. We denote a labelled tree T with the root v as
Tv. Let t′n be the number of labelled rooted trees on n vertices. Since for
every labelled tree on n vertices there are exactly n choices for the root, we
conclude that t′n = tn · n.

Actually, it would be convenient to compute the number of rooted la-
belled trees on n vertices in a slightly twisted way, where all the edges are
oriented – one of the endpoints of an edge will become the source, and the
other will be the target ; see Figure 2. Formally, an orientation of the edges
of a labelled tree T is a map o : E(T ) → V (T ) such that o(e) is the target
of e for every e ∈ E(T ).

However, we will be only interested in very specific orientations of the
edges of Tv, namely in orientations where every vertex x 6= v is the target
of exactly one edge, and the root v is the source of all of its incident edges.
Such orientations will be called outroot orientations. As it turns out, each
rooted tree Tv has exactly one outroot orientation.
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Figure 2: An orientation of an edge.

Lemma 1. Let Tv be a labelled tree with the root v. There exists a unique
outroot orientation of the edges of Tv.

Proof. Let n be the number of vertices of Tv, i.e., n = |V (Tv)|. If Tv has
only one vertex (n = 1), then the vertex must be the root and the statement
immediately follows.

For the rest of the proof, we will assume n ≥ 2. Since every tree with at
least two vertices has at least two leaves, we know that Tv contains at least
one leaf that is different from v. Let w ∈ V (Tv)\{v} be one such a leaf, and
let z ∈ V (Tv) be the unique vertex adjacent to w in Tv. Note that z might
be equal to v.

First, let us show that there exists an outroot orientation of Tv. We
proceed by induction on n. We already know that the base case n = 1
holds, so we move to the induction step. Let T ′v := Tv − w be the (n − 1)-
vertex tree with the root v. By the induction hypothesis, it has an outroot
orientation o′ such that every vertex of T ′v except v is the target of exactly
one edge. Let o be the following orientation of the edges e ∈ E(Tv):

• if e 6= {w, z}, then orient e according to its orientation in o′,

• if e = {w, z}, then orient e so that z is the source and w is the target.

It holds that every vertex of Tv except v is the target of exactly one edge,
which is what we wanted to prove.

It remains to show that there exists only one such orientation of Tv.
Suppose there are two outroot orientations of Tv, say o1 and o2. Our aim
is to show that o1 = o2. Again, we proceed by induction on n and, again,
let T ′v := Tv − w. Since both o1 and o2 are outroot orientations, the leaf w
is the target of {w, z} in both o1 and o2. Therefore, o1 induces an outroot
orientation of T ′v, which we denote by o′1. Analogously, o2 induces an outroot
orientation of T ′v, which will be denoted by o′2. By the induction hypothesis,
o′1 = o′2. Since {w, z} is oriented in both o1 and o2 so that its target is w, it
holds that o1 = o2.
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A rooted labelled tree Tv together with its unique outroot orientation

will be called outroot-oriented labelled tree, and denoted by
−→
Tv. In the rest

of the note, we focus on counting outroot-oriented labelled trees. By the
previous lemma, the number of all such trees on n vertices is equal to t′n.

All right, before we (finally) move to the step where we perform the
promised counting, we alter our problem once more. For any outroot-

oriented labelled tree
−→
Tv on n vertices, we fix an arbitrary numbering of

its edges, i.e., a bijection b : E
(−→
Tv

)
→ {1, . . . , n− 1}.

Let t′′n be the number of outroot-oriented labelled trees on n vertices

with a fixed numbering of its edges. Since for every tree
−→
Tv there are exactly

(n−1)! such numberings, it immediately follows that t′′n = t′n · (n−1)! which
in turn means that t′′n = tn ·n!. So in order to prove Theorem 1, it is enough
to establish the following lemma.

Lemma 2. t′′n = nn−1 · (n− 1)!.

Proof. Fix a number of vertices n. We design a simple procedure that will
start with the empty graph with the vertex set {1, 2, . . . , n} and build up a
root-oriented labelled tree by adding oriented edges in n− 1 steps (one edge
per step). The order in which the edges are added then determines their
numbering, and the root is uniquely determined by being the unique vertex
that is not the target of any edge. Since different runs of the procedure lead
to different outroot-oriented labelled trees, and every tree can be constructed
in this way, it follows that the total number of choices in this procedure is
exactly t′′n.

During the whole procedure, we maintain the two key properties that
are clearly necessary for succeeding:

• the so-far added edges form an acyclic graph,

• every vertex is the target of at most one edge.

Let us first look on how many choices we have for placing the first edge.
The source of the edge can be chosen in n different ways, and once the source
s is chosen, we have in total n−1 choices for the target (it can be any vertex
different from s).

Suppose already k edges have been placed and we are in the (k + 1)-
th step of the procedure, i.e., we are about to place the (k + 1)-th edge.
Since the current graph is acyclic and contains k edges, it has exactly n− k
connected components V1, V2, . . . , Vn−k. Let vi be the number of vertices in
Vi for all i ∈ {1, . . . , n − k}. The edges inside each connected component
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have to span a tree, i.e., each connected component Vi contains exactly vi−1
edges. Every edge inside Vi has exactly one target, but no vertex in Vi can
be the target for two (or more) edges. Therefore, each connected component
Vi contains vi − 1 vertices that are being the target of some edge, which in
other words means the component contains exactly one vertex that is still
allowed to become a target.

The observation above makes the counting of the possible placements
of the (k + 1)-th edge very easy: first, choose the source s of the edge –
there are n ways to do so. Let Vs be the connected component where s
belongs to. For the target of the edge, we cannot choose any vertex from Vs,
because that would create a cycle. On the other hand, in every connected
component other than Vs, we are allowed to choose exactly one vertex as the
target (otherwise we would have a vertex that is the target of two edges).
That means, there are exactly n− k− 1 = n− (k+ 1) choices for the target
of the (k + 1)-th edge.

By putting the numbers together, we can see that the number of choices
of the source and the target of the k-th edge is equal to n(n − k) for all
k = {1, 2, . . . , n− 1}. Therefore,

tn · n! = t′′n =
n−1∏
k=1

n(n− k) = nn−1 ·
n−1∏
k=1

(n− k) = nn−1 · (n− 1)!.

We conclude this note by relating tn, i.e., the number of n-vertex labelled
trees, to the number of n-vertex unlabelled trees, which we denote by un.

Corollary 1. The number of unlabelled trees on n vertices un is at least
en−1

/
n5/2.

Proof. Recall each n-vertex labelled tree can be represented as a pair (G, `),
where G is an n-vertex unlabelled tree, and ` : V (G) → {1, . . . , n} is a
bijection. Every unlabelled tree can lead to at most n! different labelled
trees, which implies the bound

nn−2 = tn ≤ un · n!.

By Stirling’s formula n! ≈
√

2πn ·
(
n
e

)n
. Since

√
2π < e, we conclude that

n! < nn+1/2
/
en−1. Therefore,

un ≥
nn−2

n!
>
en−1

n5/2
.
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Figure 3: Illustration of the double-counting steps in the proof of Theorem 1.
The solid blue edges represents the first edge in the numbering, and the
dashed red edges represents the second edge.
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