Instructions: The exam is 3 hours long and contains 6 questions. The total number of points is 100. Write your answers clearly in the notebook provided. You may quote any result/theorem seen in the lectures without proving it. Justify all your answers!

Q1 Let G be the graph depicted in Figure 1.

 a) Is G planar? (4 points)
 b) Find $\nu(G)$ and $\tau(G)$. (4 points)
 c) Find $\chi(G)$. (4 points)
 d) Find $\chi'(G)$. (4 points)

Q2 Let $\overrightarrow{G} = (V, E)$ be the oriented graph with the two specific vertices s and t and with the capacities $c : E \to \mathbb{Z}_+$ depicted in Figure 2.

 a) Find a maximum flow from the vertex S to the vertex T. (8 points)
 b) Find a minimum S,T-cut. (8 points)

Q3 Let $G = (V, E)$ be the simple graph with weights $w : E \to \mathbb{Z}_+$ obtained from the oriented graph depicted in Figure 2 by replacing each oriented edge by a non-oriented edge with the same weight.

 a) Find a shortest path spanning tree in G for the vertex S. (6 points)
 b) Find a minimum-cost spanning tree in G. (6 points)
 c) Does G have a unique minimum-cost spanning tree? (6 points)

Q4 Let $k \geq 2$ be an integer, and let G be a connected k-regular bipartite graph. Prove that G is 2-connected. (16 points)

Q5 Let G be a simple planar graph. Prove that if G contains no cycle of length five or less, then $\chi(G) \leq 3$. (16 points)

Q6 Let K_4^- be the 4-vertex graph obtained from K_4 by removing one edge. How many non-isomorphic simple 2-connected graphs $G = (V, E)$ are there with $|V| = 1000$ such that G has no K_4^--minor? (18 points)
Figure 1: The graph in the question Q1.

Figure 2: The oriented graph in the questions Q2 and Q3.