1. Let T be a tree. Prove that T has a perfect matching if and only if for every vertex $v \in V(T)$ the subgraph $T - v$ contains exactly one connected component with odd number of vertices. (2 points)

Solution: Clearly, if T has a perfect matching then it satisfies Tutte’s condition, and, in particular, for every $v \in V$, the subgraph $T - v$ has exactly one connected component with odd number of vertices. Now we show that if $\text{odd}_T(V - v) = 1$ for all $v \in V$ then T has a perfect matching. Firstly, if v is a leaf then $T - v$ has just one connected component, and hence T has even number of vertices. We now proceed by proving the statement by induction on n. If $n = 2$, then T is a single edge which also forms a perfect matching in T. Let us now assume $n \geq 4$. Let u be a leaf of T and w its unique neighbor. Consider $T' := T - u - w$; we show that T' has a perfect matching M' which together with the edge $\{u, w\}$ forms a perfect matching in T.

Suppose for contradiction T' has no perfect matching. By the induction hypothesis, there is a vertex $v \in V(T') = V \setminus \{u, v\}$ such that $T' - v$ has $\ell \geq 3$ connected components $C_1, C_2, \ldots, C_{\ell}$ of odd size. However, since $T - v$ has only one odd component, the vertex w must have a neighbor in at least two of the components C_i and C_j (where $i \neq j$). Therefore, there are at least two different paths from v to w (one path passes through C_i, the other one through C_j); a contradiction.

2. Let G be a 3-regular simple graph with no cut-edge, and let $e \in E(G)$ be an edge of G.

a) Prove that G has a perfect matching M_1 such that $e \in M_1$. (2 points)

Solution: Let u and w be the two endpoints of e, and let $H := G - u - w$. It is enough to show that H has a perfect matching M', since $M' + e$ will be a perfect matching of G that contains e.

Let $V := V(G)$ and $W := V(H) = V \setminus \{u, w\}$. Suppose for contradiction H does not have a perfect matching. By Tutte’s theorem, there exists $S_0 \subseteq W$ such that $\text{odd}_H(S_0) > |S_0|$, where $S_0 = W \setminus S_0$. First, we observe that the parity of $\text{odd}_H(S_0)$ and $|S_0|$ is the same. Indeed, recall that $|V|$ is even and that

$$|V| - 2 = |W| = \sum_{c \text{ even component of } H[S_0]} |C| + \sum_{c \text{ odd component of } H[S_0]} |C| + |S_0|.$$

Therefore, $\text{odd}_H(S_0) \geq |S_0| + 2$, and for $S := S_0 \cup \{u, w\}$ we have

$$\text{odd}_G(V \setminus S) = \text{odd}_H(S_0) \geq |S_0| + 2 = |S|.$$

Now we look closer to the situation in G and the set of vertices S. The number of edges between S and $V \setminus S$ is at most $3(|S| - 2) + 4 = 3|S| - 2$ because u is adjacent to at most two vertices in $V \setminus S$ and the same holds also for v. On the other hand, there are at least $|S|$ odd components in $G(V \setminus S)$. As in the proof of Petersen’s theorem in the lecture, each such odd connected component must receive at least 3 edges from the vertices in S (only one edge would mean a cut-edge in G, only two edges violates the parity constraint). So the number of edges between S and $V \setminus S$ must be at least $3|S|$; a contradiction.

b) Prove that G has a perfect matching M_2 such that $e \notin M_2$. (2 points)

Solution: This immediately follows from (a). Let v be one of the endpoints of e and let f be one of the other two edges incident to v (chosen arbitrarily). A perfect matching M containing f guaranteed by (a) clearly cannot contain e.
3.

a) Let \(k \geq 3 \) and \(G = (V, E) \) a \(k \)-regular connected graph with even number of vertices. Suppose \(G \) has the property that for every set of edges \(F \subseteq E \) of size \(k-2 \), the subgraph \((V, E \setminus F)\) is still connected (graphs with this property are called \((k-1)\)-edge-connected). Prove that \(G \) has a perfect matching.

Solution: Fix the value of \(k \), and a \(k \)-regular \((k-1)\)-edge-connected graph \(G = (V, E) \). Suppose \(G \) has no perfect matching. Then by Tutte’s theorem, there is \(S \subseteq V \) with \(|S| = \ell \) and the odd connected components of \(G-S \) are \(C_1, C_2, \ldots, C_m \) with \(m > \ell \).

Claim. Every odd connected component \(C_i \) sends at least \(k \) edges to \(S \).

Proof. By the connectivity assumption on \(G \), the only situation when this claim would be false is when \(C_i \) sends exactly \(k-1 \) edges out. Let \(H_i \) be the induced subgraph of \(G \) defined by \(C_i \). By definition,

\[
\sum_{v \in C_i} \deg_{H_i}(v) = k \cdot |C_i| - (k-1) = k \cdot (|C_i| - 1) + 1.
\]

Since \(|C_i| - 1 \) is even, the above sum must be odd, which contradicts the hand-shaking lemma. \(\square \)

Let’s count the edges of \(G \) between \(S \) and \(\bigcup_{i \in \{1, \ldots, m\}} C_i \) now. On the one hand, that number is at most \(\ell \cdot k \). On the other hand, the claim above yields the number of such edges is at least \(m \cdot k \), and hence \(m \leq \ell \); a contradiction.

b) For every \(k \geq 3 \), construct a \(k \)-regular graph \(Z_k = (V, E) \) with even number of vertices which has the property that for every subset of edges \(F \subseteq E \) of size \(k-3 \), the subgraph \((V, E \setminus F)\) is still connected (i.e., \(Z_k \) is \((k-2)\)-edge-connected), but yet \(Z_k \) has no perfect matching. \(\hfill (2 \text{ points}) \)

Solution: This was perhaps a bit harder exercise than I originally thought; I apologize.

Firstly, let us show that there exists a \((k-2)\)-edge-connected graph where \((k+1)\) vertices have degree \(k \), and \((k-2)\) vertices have degree \((k-1)\).

Lemma. Fix an integer \(k \geq 3 \). There exist a \((2k-1)\)-vertex \((k-2)\)-edge-connected simple graph \(H_k = (V_k, E_k) \) with \(V_k = \{y_1, y_2, \ldots, y_{k+1}, z_1, z_2, \ldots, z_{k-2}\} \), where all the vertices \(y_i \), for \(1 \leq i \leq k+1 \), have degree exactly \(k \), and all the vertices \(z_j \), for \(1 \leq j \leq k-2 \), have degree exactly \(k-1 \).

Proof. Start with a \(k \)-vertex complete graph on the vertices \(\{y_1, y_2, \ldots, y_k\} \), plus a \((k-2)\)-vertex complete graph on the vertices \(\{z_1, z_2, \ldots, z_{k-2}\} \). Next, place an edge from the vertex \(y_{k+1} \) to the vertices \(y_{k-1} \) and \(y_k \), then \((k-2)\) edges of the form \(y_j z_j \), where \(1 \leq j \leq k-2 \), and also \((k-2)\) edges of the form \(y_{k+1} z_j \), again where \(1 \leq j \leq k-2 \). Observe that every vertex \(y_i \), where \(1 \leq i \leq k+1 \), has degree exactly \(k \), and every vertex \(z_j \), where \(1 \leq j \leq k-2 \), has degree exactly \(k-1 \).

It remains to show that \(H_k \) is \((k-2)\)-edge-connected. In other words, we want to show that for any two vertices \(u, w \in V_k \) and any \((k-3)\) edges \(F \subseteq E_k \), there will still be some path from \(u \) to \(w \) in the subgraph \(H_k - F = (V_k, E_k \setminus F) \). This will definitely be true if we find \((k-2)\) edge-disjoint paths between \(u \) and \(w \) in the graph \(H_k \), simply because removing \(F \) can break at most \((k-3)\) of them.

Claim. For every \(u, w \in V_k \), there exist \((k-2)\) edge-disjoint paths from \(u \) to \(w \) in \(H_k \).

Unfortunately, we need to go through different cases here...
Case 1) $u, w \in \{y_1, y_2, \ldots, y_k\}$. Indeed; actually, we can easily find even $(k-1)$ edge-disjoint paths.
Without loss of generality, $u = y_1$ and $w = y_2$. Then one path is simply the edge y_1, y_2, and then there $(k-2)$ paths of the form $u = y_1, y_i, y_2 = w$, where $3 \leq i \leq k$.

Case 2) $u \in \{y_1, y_2, \ldots, y_{k-1}\}$ and $w = y_{k+1}$. By symmetry, we may assume $u = y_1$. We actually describe k edge-disjoint paths this time: there are three paths $P_1 = y_1, z_1, y_{k+1}, P_2 = y_1, y_{k-1}, y_{k+1}, P_3 = y_1, y_k, y_{k+1}$, and, for every i such that $2 \leq i \leq k-2$, there is a path $P_{i+2} = y_1, y_i, z_i, y_{k+1}$.

Case 3) $u \in \{y_{k-1}, y_k\}$ and $w = y_{k+1}$. Again by symmetry, we may assume $u = y_k$. There are $(k-2)$-edge-disjoint paths of the form $y_k y_i z_i y_{k+1}$ (plus also an edge $y_k y_{k+1}$).

Case 4) $u \in \{y_1, y_2, \ldots, y_{k-2}\}$ and $w \in \{z_1, \ldots, z_{k-2}\}$. Without loss of generality, $u = y_1$. If $w = z_1$, then there is an edge y_1, z_1 and $(k-3)$ edge-disjoint paths of the form y_1, y_i, z_i, z_1, where $2 \leq i \leq k-2$. If $w \neq z_1$, then by symmetry we may assume $w = z_2$. This time, we have two paths y_1, z_1, z_2 and y_1, y_2, z_2, plus $(k-4)$ paths of the form y_1, yi, z_i, z_2, where $3 \leq i \leq k-2$.

Case 5) $u \in \{y_{k-1}, y_k\}$ and $w \in \{z_1, \ldots, z_{k-2}\}$. Without loss of generality, $u = y_k$ and $w = z_1$. The sought paths are $P_i = y_k, y_i, z_i$ and for every $i \leq k-2$, we take $P_i = y_{k+1}, z_i, z_1$.

Case 6) $u = y_{k+1}$ and $w \in \{z_1, \ldots, z_{k-2}\}$. By symmetry, we assume $w = z_1$. This time, we take $P_1 = y_{k+1}, z_1$ and for $2 \leq i \leq k-2$, we take $P_i = y_{k+1}, z_i, z_1$.

Case 7) $u, w \in \{z_1, \ldots, z_{k-2}\}$. Finally, the last case! Without loss of generality, $u = z_1$ and $v = z_2$.
This time, we take $P_1 = z_1, z_2, P_2 = z_1, y_{k+1}, z_2$, and for $3 \leq i \leq k-2$, we take $P_i = z_1, z_i, z_2$.

This finishes the proof of the claim as well as the proof of the lemma; Yay!

Now we claim that the following graph Z_k is both $(k-2)$-edge-connected and yet has no perfect matching: take k vertex-disjoint copies C^1, C^2, \ldots, C^k of the graph H_k, add $(k-2)$ new vertices $v_1, v_2, \ldots, v_{k-2}$, and for every $i \in \{1, \ldots, k-2\}$ and $j \in \{1, \ldots, k\}$ connect v_i to z_j, where z_j is the i-th vertex of degree $(k-1)$ in the copy C^j.

Clearly, Z_k is k-regular and has no perfect matching. The latter one is because

$$\text{odd} G(V(Z_k) - S) = k = |S| + 2 \quad \text{for } S = \{v_1, \ldots, v_{k-2}\}.$$

It remains to show that Z_k stays connected even after removing arbitrary $(k-3)$ edges $F \subseteq E(Z_k)$. Suppose there is $F \subseteq E(Z_k)$ of size $(k-3)$ such that $G - F$ is not connected. Since H_k is $(k-2)$-edge-connected, we may assume that every $f \in F$ is incident to some vertex v_i. This reduces the problem of $(k-2)$-edge-connectivity of the graph Z_k to the following simple lemma:

Lemma. For every $k \geq 3$, the complete bipartite graph $K_{k,k-2}$ is $(k-2)$-edge-connected.

Proof. Let $A = \{a_1, \ldots, a_k\}$ be the part of size k and $B = \{b_1, \ldots, b_{k-2}\}$ be the part of size $(k-2)$. We will show that between any two vertices $u, w \in A \cup B$, there are $(k-2)$-edge-disjoint paths. Again, we go over three cases here:

Case 1) $u, w \in A$. The sought paths are $P_i = u, b_i, w$, where $1 \leq i \leq k-2$.

Case 2) $u \in A$ and $w \in B$. By symmetry, we may assume $u = a_1$. Let $w = b_j$ for some $j \in \{1, \ldots, k-2\}$. Apart from the edge a_1, b_j, there are also $(k-3)$ paths of the form a_1, b_i, a_i, b_j, where $1 \leq i \leq k-2$ and $i \neq j$.

Case 3) $u, w \in B$. This time, we find k edge-disjoint paths $P_i = u, a_i, w$, where $1 \leq i \leq k$.

This finishes the proof of the lemma, which in turn yields that Z_k is indeed $(k-2)$-edge-connected.
Figure 1: The graph Z_3 for Question 3b.