1a) Prove that if G is a 3-regular simple graph that contains a Hamilton cycle, then $\chi'(G) = 3$. (2 points)

Solution: Let C be a Hamilton cycle in G. By the handshaking lemma every 3-regular graph must have even number of vertices. Therefore, we can properly 2-edge-color the edges of C. Moreover, the subgraph $G - C$ is 1 regular, i.e., it is a perfect matching whose edges we use as the third color class.

1b) Construct a simple 3-regular graph with $\chi'(G) = 3$ that contains no Hamilton cycle. (1 point)

Solution: See the 3-regular properly 3-edge-colored graph G depicted here.

![Graph Image]

(The drawing used and slightly modified with courtesy of Robin Guzniczak.)

Suppose G would have a Hamilton cycle C. Then, in particular, one edge incident with the top vertex v is not be contained in C. Without loss of generality, it is the most-right (blue-colored) edge e. That means that C is a Hamilton cycle also in the graph $G - e$. However, the graph $G - e$ is not 2-edge-connected and therefore has no Hamilton cycle; a contradiction.

2. For $n \geq 2$, use the following steps to determine $\chi'(K_n)$ and construct its optimal edge-coloring:

a) For every odd integer $n \geq 3$, observe that K_n does not have an edge-coloring with $n - 1$ colors. (1 point)

Solution: Indeed, K_n is an $(n - 1)$-regular graph, so if it has an edge-coloring with $n - 1$ colors, then each color class must form a perfect matching. But for n odd, K_n cannot have a perfect matching.

b) For every odd integer $n \geq 3$, prove that if c is an edge-coloring of K_n with n colors, then each color class of c contains $(n - 1)/2$ edges. (Note that $\chi'(K_n) = n$ follows from Vizing’s Theorem) (1 point)

Solution: Consider an edge-coloring of K_n with n colors. Each color class is a matching, and since n is odd, any matching of K_n has size at most $(n - 1)/2$ edges. However, each edge of K_n has one of the n colors and since

$$\binom{n}{2} = n \cdot \frac{n - 1}{2},$$

we conclude that the bound $(n - 1)/2$ on the size of a color class must be tight.
c) For every even integer \(n \geq 2 \), use (b) to show that \(\chi'(K_n) = n - 1 \).

Solution: Consider any edge-coloring of \(K_{n-1} \) using \(n - 1 \) colors. From the part (b), we know that each color class contains \((n - 2)/2 \) edges. In other words, for each color \(i \in \{1, \ldots, n-1\} \), there is exactly one vertex \(v_i \) that is not incident to any edge colored with \(i \). Moreover, for different colors \(i \neq j \), it holds that \(v_i \neq v_j \). Adding a new vertex \(v_n \) and coloring the edge \(\{v_i, v_n\} \) with the color \(i \) for all \(i \in \{1, \ldots, n-1\} \) yields an \((n - 1) \)-edge-coloring of \(K_n \).

\[\chi'(K_n) = n - 1. \]

(1 point)

\[\text{Hint for (a): use Tutte’s Theorem.} \]

\[\text{Hint for (d): if } n \text{ is odd, put } V(K_n) = \{0, \ldots, n-1\} \text{ and color the edge } \{i, j\} \text{ with } (i + j) \mod n. \]

Solution: As the hint suggested, we should show that for \(n \) being odd and \(V(K_n) = \{0, \ldots, n-1\} \), coloring the edge \(\{i, j\} \) with \((i + j) \mod n \) yields an edge-coloring of \(K_n \). Suppose for a contradiction that there are two edges \(e_1 \neq e_2 \) incident to some vertex \(i \) that are both colored with the same color, say \(x \in \{0, \ldots, n-1\} \). Let \(e_1 = \{i, j\} \) and \(e_2 = \{i, k\} \). Since \((i + j) \equiv x \equiv (i + k) \mod n \), we have \(j \equiv k \mod n \). However, that means that \(j = k \) contradicting \(e_1 \neq e_2 \).

If \(n \) is even, we let \(n' := n - 1 \) and \(V(K_n) = \{0, \ldots, n' - 1\} \). If \(i, j \in \{0, \ldots, n' - 1\} \), we color the edge \(\{i, j\} \) with \((i + j) \mod n' \), and the remaining edges \(\{i, n'\} \), where \(i \in \{0, \ldots, n' - 1\} \), we color with \((2i) \mod n' \). Since \(n' \) is odd, it follows that \(2i \neq 2j \mod n' \) for any \(i, j \in \{0, \ldots, n' - 1\} \) with \(i \neq j \).

3. Let \(G = (V, E) \) be a loopless multigraph. Recall the line graph of \(G \), which we denote by \(L(G) \), is a simple graph with the vertex set being \(E \), and \(e \in E \) is adjacent to \(f \in E \) in \(L(G) \) if and only if the edges \(e \) and \(f \) of \(G \) have an endpoint in common. Equivalently, \(L(G) = (E, F) \) where \(F = \{\{e, f\} : e \cap f \neq \emptyset\} \).

a) Let \(G = (V, E) \) be a loopless connected multigraph with an even number of edges. Prove that the line graph \(L(G) \) has a perfect matching.

Solution: Suppose for contradiction \(L(G) \) does not have a perfect matching. By Tutte’s theorem, there exists \(S \subseteq E \) such that \(k > |S| \) for \(k := \text{odd}_{L(G)}(E \setminus S) \). It follows that the parity of \(k \) is the same as the parity of \(|S| \), hence \(k \geq |S| + 2 \). Now look back to the graph \(G \). The connected components of the subgraph of \(L(G) \) induced by \(E \setminus S \) are in one-to-one correspondence with the connected components of \(G' := (V, E \setminus S) \). So \(G' \) has at least \(k \) connected components. However, each edge from \(S \) can connect at most two components of \(G' \) and since \(|S| < k - 1 \), \(G \) cannot be connected.

b) Let \(G = (V, E) \) be a loopless connected multigraph with an odd number of edges. Prove that \(L(G) \) has a matching of size \(\frac{|E| - 1}{2} \).

Solution: Simply add an arbitrary edge to \(G \) connecting two different vertices and use the previous part. The perfect matching \(M \) in the line graph of the new graph contains a matching \(M' \subseteq E \) of size \(\frac{|E| - 1}{2} \).

Alternatively, if \(G \) is not a tree, there is \(e \in E \) such that \(G' := G - e \) is connected. On the other hand, if \(G \) is a tree, then let \(v \) be a leaf and \(G' := G - v \). In both cases, \(G' \) is connected \(|E(G')| \) is even, and \(L(G') \) is a subgraph of \(L(G) \), so we use the part a).