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Theorem (Kelly-Kiihn-Osthus, 2010)
Fix £ > 4,n > ng. G n-vertex oriented with §*(G) > 4 = CeG
If £ not multiple of 3, then best possible!

o
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Let G be N-vertex oriented graph with §* > 0.25N = (.?6 eG

Claim: §+(H) > 0.26n = Cs +— no Cs = Ju deg™ (1) < 0.26n
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Corollary’: N*(w) and N~ (w) are acyclic for every vertex w € G
if 3 oriented path xyz in N*(w) then use z — w path = C3 or G

Corollary”: Vs, t: there is oriented path from s to t of length < 4
Do Corollary again but inside N*(s) & N~ (t) pick sink (source)
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Razborov (2010): systematic approach to extremal combinatorics
Analyze (dense) large graphs via relations between small subgraphs

n 2 . n?

— —de ) —3x ~nx|——e(G
0 3 (5~ desle AR RS ()
for every n-vertex G with # /\ =0

Powerful tool, shed light to many open problems

max ('} subj. to /A\=0 max<in orient graph min @ + % in perm

PR

Typical instance rrlmx #tcopies of H in G s.t. constraints on G
G large

Idea: use relaxation, optimize over superset — semidefinite prg
Duality find specific E (- - - )2 > 0 inequalities — generates proof
Such search can automatized and computer assisted (SDP solvers)
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Fix ¢ > 4,n > ng. G n-vertex oriented with §*(G) > = CeG
where ky is the smallest integer > 3 that does not divide £

For ¢ = 6 they conjecture: 6%(G) > |2| +1 = Cs € G FALSE!
Theorem (Glebov-Grzesik-JV): 6%(G) > 7| +2 = CGeG
Similarly Gy : 6%(G,) = {TZJ +1butno G (except kp =4 & ¢ = 3)

-
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Fix ¢ >4, n> ng. G n-vertex oriented with §*(G) > = CeG
where ky is the smallest integer > 3 that does not divide ¢

6%(G) bound = arc u — w & path from u to w of length < k;/2
Caccetta-Hagguvist result for A — diameter of G is < 3k

— two overlaping 51, G, of lengths aj, ap with ged(a1, a2) < ke
= closed walk in G of length ¢ if £ > 10.5k? (works for k; > 8)
+Flag A for k; € {4,5} yield 6%(G) > % = closed walk of length ¢
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