#### On degree thresholds of cycles in oriented graphs

Jan Volec

MSCA global fellow at Emory University & Universität Hamburg

#### joint work with Roman Glebov and Andrzej Grzesik

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 800607.

An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

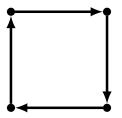
Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\triangle$ .

An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\bigwedge$ .



3k + 1 vertices, connect each vertex  $i \rightarrow i + 1, i + 2, \dots, i + k$ 

An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\bigwedge$ .

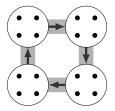


3k + 1 vertices, connect each vertex  $i \rightarrow i + 1, i + 2, \dots, i + k$ 

An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

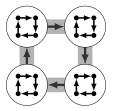
The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\bigwedge$ .



An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

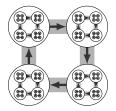
The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\triangle$ .



An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

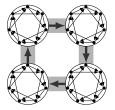
The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\triangle$ .



An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

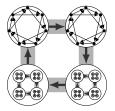
The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\triangle$ .

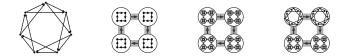


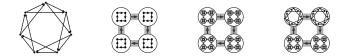
An *n*-vertex digraph G with minimum out-degree  $\delta^+(G)$  at least k contains an oriented cycle of length at most  $\lceil n/k \rceil$ .

Theorem (Shen, 2000): C-H conjecture holds for  $k \leq \sqrt{n/2}$ .

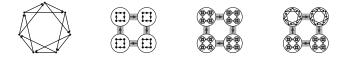
The triangle case of C-H conjecture – widely open Every *n*-vertex oriented G with  $\delta^+(G) \ge n/3$  contains  $\triangle$ .



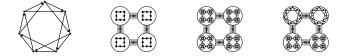




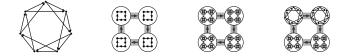
Every *n*-vertex oriented *G* with  $\delta^+(G) \ge cn$  contains  $\bigwedge$ .



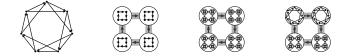
• Caccetta-Häggkvist (1978):  $c < (3 - \sqrt{5})/2 \approx 0.3819$ 



- Caccetta-Häggkvist (1978):  $c < (3 \sqrt{5})/2 \approx 0.3819$
- Bondy (1997):  $c < (2\sqrt{6} 3)/5 \approx 0.3797$



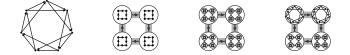
- Caccetta-Häggkvist (1978):  $c < (3 \sqrt{5})/2 \approx 0.3819$
- Bondy (1997):  $c < (2\sqrt{6} 3)/5 \approx 0.3797$
- Shen (1998):  $c < 3 \sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c < 0.3531



- Caccetta-Häggkvist (1978):  $c < (3 \sqrt{5})/2 \approx 0.3819$
- Bondy (1997):  $c < (2\sqrt{6} 3)/5 \approx 0.3797$
- Shen (1998):  $c < 3 \sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): *c* < 0.3531
- Hladký, Kráľ, Norin (2009): c < 0.3465
- Razborov (2011): if G is  $\{F_1, F_2, F_3\}$ -free, then C-H holds



Every *n*-vertex oriented *G* with  $\delta^+(G) \ge cn$  contains  $\bigwedge$ .



- Caccetta-Häggkvist (1978):  $c < (3 \sqrt{5})/2 \approx 0.3819$
- Bondy (1997):  $c < (2\sqrt{6} 3)/5 \approx 0.3797$
- Shen (1998):  $c < 3 \sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): *c* < 0.3531
- Hladký, Kráľ, Norin (2009): c < 0.3465
- Razborov (2011): if G is  $\{F_1, F_2, F_3\}$ -free, then C-H holds

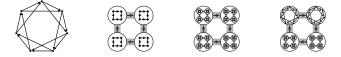


• Sereni, De Joannis De Verclos, JV: c < 0.339

The C-H conjecture and around: semi-degree thresholds semi-degree of G:  $\delta^{\pm}(G) := \min(\delta^{+}(G), \delta^{-}(G))$  The C-H conjecture and around: semi-degree thresholds semi-degree of G:  $\delta^{\pm}(G) := \min(\delta^{+}(G), \delta^{-}(G))$ Conjecture (Behzad-Chartrand-Wall, 1970) Every n-vertex oriented G with  $\delta^{\pm}(G) \ge \frac{n}{3}$  contains  $\bigwedge$ .



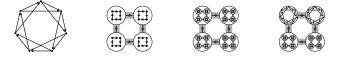
The C-H conjecture and around: semi-degree thresholds semi-degree of G:  $\delta^{\pm}(G) := \min(\delta^{+}(G), \delta^{-}(G))$ Conjecture (Behzad-Chartrand-Wall, 1970) Every n-vertex oriented G with  $\delta^{\pm}(G) \ge \frac{n}{3}$  contains  $\bigwedge$ .



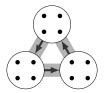
Theorem (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{3} \Rightarrow \vec{C_{\ell}} \in G$ 

The C-H conjecture and around: semi-degree thresholds semi-degree of G:  $\delta^{\pm}(G) := \min(\delta^{+}(G), \delta^{-}(G))$ Conjecture (Behzad-Chartrand-Wall, 1970) Every n-vertex oriented G with  $\delta^{\pm}(G) \ge \frac{n}{3}$  contains  $\bigwedge$ .

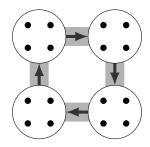


Theorem (Kelly-Kühn-Osthus, 2010) Fix  $\ell \ge 4, n \ge n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{3} \Rightarrow \vec{C_{\ell}} \in G$ If  $\ell$  not multiple of 3, then best possible!

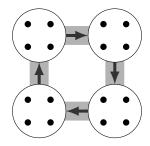


For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ 

For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ 

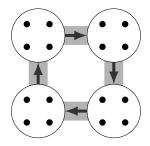


For  $\ell \in \mathbb{N} \longrightarrow k_{\ell}$  := the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for  $k_{\ell} = 3$ .



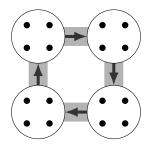
For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for  $k_{\ell} = 3$ .

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ 



For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for  $k_{\ell} = 3$ .

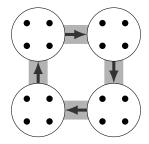
Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ Talk today: The most difficult case:  $\ell = 6$ 



For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for  $k_{\ell} = 3$ .

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ 

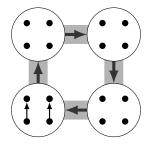
Talk today: The most difficult case:  $\ell = 6$  *i.e*  $\delta^{\pm}$  *threshold*  $\vec{C_6} = \frac{1}{4}$ 



For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for  $k_{\ell} = 3$ .

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ 

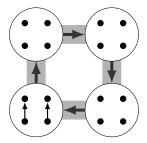
Talk today: The most difficult case:  $\ell = 6$  *i.e*  $\delta^{\pm}$  *threshold*  $\vec{C_6} = \frac{1}{4}$ 



For  $\ell \in \mathbb{N} \longrightarrow k_{\ell} :=$  the smallest integer  $\geq 3$  that does not divide  $\ell$ Fix  $\ell \geq 4$ ,  $n \geq n_0$ . *G n*-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for  $k_{\ell} = 3$ .

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ 

Talk today: The most difficult case:  $\ell = 6$  *i.e*  $\delta^{\pm}$  *threshold*  $\vec{C_6} = \frac{1}{4}$ 



Stronger conjecture: G n-vertex oriented  $\delta^+(G) \gg \frac{n}{k_\ell} \Rightarrow \vec{C_\ell} \in G$  ?

Sketch of the proof of  $\delta^\pm$  threshold for  $\vec{\mathcal{C}}_6=1/4$ 

Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25 N \Longrightarrow \vec{C_6} \in G$ 

# Sketch of the proof of $\delta^{\pm}$ threshold for $ec{C_6}=1/4$

Let *G* be *N*-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$ **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$ 

## Sketch of the proof of $\delta^\pm$ threshold for $ec{C_6}=1/4$

Let *G* be *N*-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$  $\exists v \deg^-(v) < 0.26n$  Sketch of the proof of  $\delta^{\pm}$  threshold for  $ec{C_6}=1/4$ 

Let *G* be *N*-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\bigwedge$  removal lemma, we may also assume no  $\bigwedge$ ) Sketch of the proof of  $\delta^\pm$  threshold for  $\vec{\mathcal{C}}_6=1/4$ 

Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\bigwedge$  removal lemma, we may also assume no  $\bigwedge$ )

**Corollary:**  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 

Sketch of the proof of  $\delta^{\pm}$  threshold for  $ec{C_6}=1/4$ 

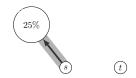
Let *G* be *N*-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\triangle$  removal lemma, we may also assume no  $\triangle$ )

**Corollary:**  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 

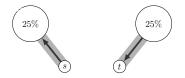
(s)

(t)

Let *G* be *N*-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\bigwedge$  removal lemma, we may also assume no  $\bigwedge$ )



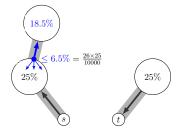
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$ Claim:  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \leftrightarrow \text{no } \vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ ) Corollary:  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 



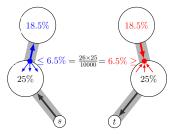
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$ Claim:  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \leftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ ) Corollary:  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 



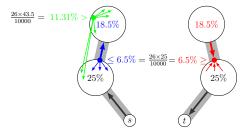
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )



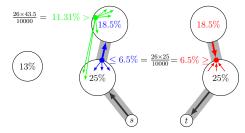
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )



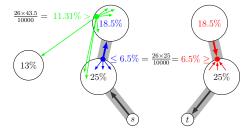
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )



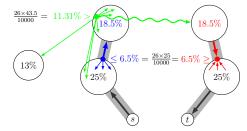
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )



Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )

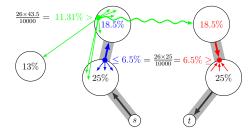


Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )



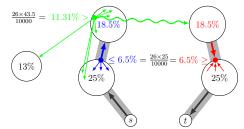
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )

**Corollary:**  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 



**Corollary':**  $N^+(w)$  and  $N^-(w)$  are acyclic for every vertex  $w \in G$ 

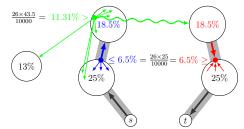
Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )



**Corollary':**  $N^+(w)$  and  $N^-(w)$  are acyclic for every vertex  $w \in G$ if  $\exists$  oriented path *xyz* in  $N^+(w)$  then use  $z \to w$  path  $\Rightarrow \vec{C_3}$  or  $\vec{C_6}$ 

Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )

**Corollary:**  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 

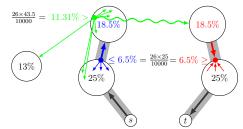


**Corollary':**  $N^+(w)$  and  $N^-(w)$  are acyclic for every vertex  $w \in G$ if  $\exists$  oriented path *xyz* in  $N^+(w)$  then use  $z \to w$  path  $\Rightarrow \vec{C_3}$  or  $\vec{C_6}$ 

**Corollary":**  $\forall s, t$ : there is oriented path from s to t of length  $\leq 4$ 

Let G be N-vertex oriented graph with  $\delta^{\pm} \gg 0.25N \Longrightarrow \vec{C_6} \in G$  **Claim:**  $\delta^+(H) \ge 0.26n \Rightarrow \vec{C_6} \longleftrightarrow$  no  $\vec{C_6} \Rightarrow \exists u \deg^+(u) < 0.26n$   $\exists v \deg^-(v) < 0.26n$ (By  $\land$  removal lemma, we may also assume no  $\land$ )

**Corollary:**  $\forall s, t \in G$ : there is oriented path  $s \longrightarrow t$  of length  $\leq 5$ 



**Corollary':**  $N^+(w)$  and  $N^-(w)$  are acyclic for every vertex  $w \in G$ if  $\exists$  oriented path *xyz* in  $N^+(w)$  then use  $z \to w$  path  $\Rightarrow \vec{C_3}$  or  $\vec{C_6}$ 

**Corollary":**  $\forall s, t$ : there is oriented path from s to t of length  $\leq 4$  Do Corollary again but inside  $N^+(s) \& N^-(t)$  pick sink (source)

Razborov (2010): systematic approach to extremal combinatorics

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$\sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge + \# \bigoplus \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

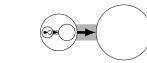
$$0 \leq \sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge + \# \bigoplus \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$
  
for every *n*-vertex *G* with  $\# \bigwedge = 0$ 

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$0 \leq \sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge_{\bullet} + \# \bigoplus_{\bullet} \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$
for every *n*-vertex *G* with  $\# \bigwedge_{\bullet} = 0$ 

Powerful tool, shed light to many open problems

max  $\triangle$  subj. to  $\triangle = 0$  max  $\lt$  in orient graph min  $\checkmark + \checkmark$  in perm





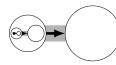
Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$0 \le \sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge + \# \bigoplus \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$
  
for every *n*-vertex *G* with  $\# \bigwedge = 0$ 

Powerful tool, shed light to many open problems

max  $\triangle$  subj. to  $\triangle = 0$  max  $\lt$  in orient graph min  $\checkmark + \checkmark$  in perm







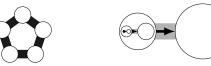
**Typical instance**  $\max_{G \text{ large}} \# \text{copies of } H \text{ in } G \text{ s.t. constraints on } G$ 

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$0 \leq \sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge_{\bullet} + \# \bigoplus_{\bullet} \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$
for every *n*-vertex *G* with  $\# \bigwedge_{\bullet} = 0$ 

Powerful tool, shed light to many open problems

max  $\triangle$  subj. to  $\triangle = 0$  max  $\lt$  in orient graph min  $\checkmark + \checkmark$  in perm





**Typical instance**  $\max_{G \text{ large}} \# \text{copies of } H \text{ in } G \text{ s.t. constraints on } G$ 

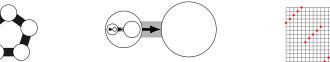
Idea: use relaxation, optimize over superset  $\rightarrow$  semidefinite prg

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$0 \leq \sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge + \# \bigoplus \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$
  
for every *n*-vertex *G* with  $\# \bigwedge = 0$ 

Powerful tool, shed light to many open problems

max  $\bigtriangleup$  subj. to  $\bigwedge = 0$  max  $\lt$  in orient graph min  $\checkmark$  +  $\circledast$  in perm



**Typical instance**  $\max_{G \text{ large}} \# \text{copies of } H \text{ in } G \text{ s.t. constraints on } G$ 

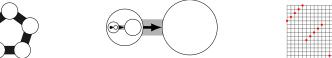
Idea: use relaxation, optimize over superset  $\longrightarrow$  semidefinite prg Duality find specific  $\mathbb{E}(\cdots)^2 \ge 0$  inequalities  $\rightarrow$  generates proof

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$0 \leq \sum_{u} \left(\frac{n}{2} - \deg(u)\right)^2 - 3 \times \# \bigwedge_{\bullet} + \# \bigoplus_{\bullet} \approx n \times \left(\frac{n^2}{4} - e(G)\right)$$
for every *n*-vertex *G* with  $\# \bigwedge_{\bullet} = 0$ 

Powerful tool, shed light to many open problems

max  $\bigtriangleup$  subj. to  $\bigtriangleup = 0$  max  $\lt$  in orient graph min  $\checkmark$  +  $\circledast$  in perm

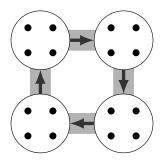


**Typical instance**  $\max_{G \text{ large}} \# \text{copies of } H \text{ in } G \text{ s.t. constraints on } G$ Idea: use relaxation, optimize over superset  $\longrightarrow$  semidefinite prg Duality find specific  $\mathbb{E}(\cdots)^2 \ge 0$  inequalities  $\rightarrow$  generates proof

Such search can automatized and computer assisted (SDP solvers)

Conjecture (Kelly-Kühn-Osthus, 2010)

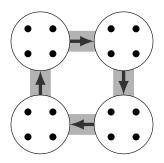
Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 



Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

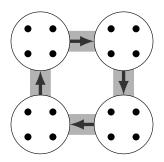
For  $\ell = 6$  they conjecture:  $\delta^{\pm}(G) \geq \lfloor \frac{n}{4} \rfloor + 1 \Longrightarrow \vec{C_6} \in G$ 



Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

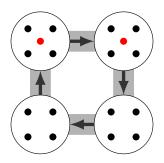
For  $\ell = 6$  they conjecture:  $\delta^{\pm}(G) \geq \left|\frac{n}{4}\right| + 1 \Longrightarrow \vec{C_6} \in G$  **FALSE!** 



Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

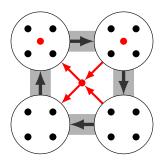
For  $\ell = 6$  they conjecture:  $\delta^{\pm}(G) \geq \left|\frac{n}{4}\right| + 1 \Longrightarrow \vec{C_6} \in G$  **FALSE!** 



Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

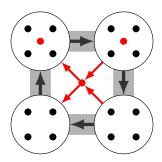
For  $\ell = 6$  they conjecture:  $\delta^{\pm}(G) \geq \left|\frac{n}{4}\right| + 1 \Longrightarrow \vec{C_6} \in G$  **FALSE!** 



#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

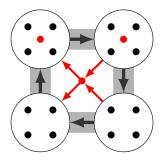
For  $\ell = 6$  they conjecture:  $\delta^{\pm}(G) \ge \lfloor \frac{n}{4} \rfloor + 1 \Longrightarrow \vec{C_6} \in G$  **FALSE!** Theorem (Glebov-Grzesik-JV):  $\delta^{\pm}(G) \ge \lfloor \frac{n}{4} \rfloor + 2 \Longrightarrow \vec{C_6} \in G$ 



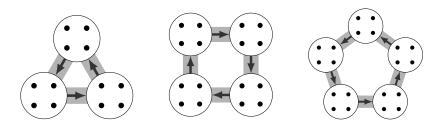
#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

For  $\ell = 6$  they conjecture:  $\delta^{\pm}(G) \ge \lfloor \frac{n}{4} \rfloor + 1 \Longrightarrow \vec{C_6} \in G$  **FALSE!** Theorem (Glebov-Grzesik-JV):  $\delta^{\pm}(G) \ge \lfloor \frac{n}{4} \rfloor + 2 \Longrightarrow \vec{C_6} \in G$ Similarly  $G_{\ell} : \delta^{\pm}(G_{\ell}) = \left| \frac{n}{k_{\ell}} \right| + 1$  but no  $\vec{C_{\ell}}$  (except  $k_{\ell} = 4 \& \ell \equiv 3$ )

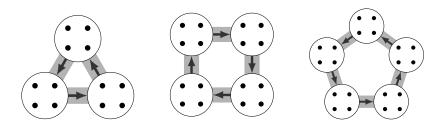


Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \tilde{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 



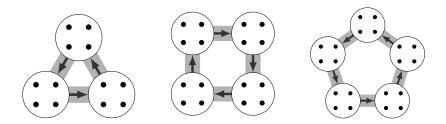
Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

 $\delta^{\pm}(G)$  bound  $\Longrightarrow$  arc  $u \to w$  & path from u to w of length  $\leq k_{\ell}/2$ 



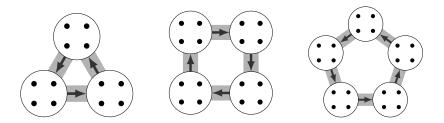
Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

 $\delta^{\pm}(G)$  bound  $\Longrightarrow$  arc  $u \to w$  & path from u to w of length  $\leq k_{\ell}/2$ Caccetta-Häggvist result for  $\bigwedge \Longrightarrow$  diameter of G is  $< 3k_{\ell}$ 



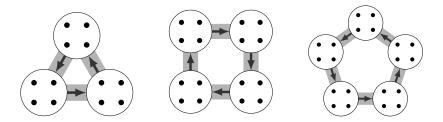
Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

 $\delta^{\pm}(G)$  bound  $\Longrightarrow$  arc  $u \to w$  & path from u to w of length  $\leq k_{\ell}/2$ Caccetta-Häggvist result for  $\bigwedge \Longrightarrow$  diameter of G is  $< 3k_{\ell}$  $\Longrightarrow$  two overlaping  $\vec{C_1}, \vec{C_2}$  of lengths  $a_1, a_2$  with  $gcd(a_1, a_2) < k_{\ell}$ 



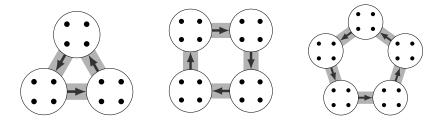
Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

 $\delta^{\pm}(G)$  bound  $\Longrightarrow$  arc  $u \to w$  & path from u to w of length  $\leq k_{\ell}/2$ Caccetta-Häggvist result for  $\bigwedge \Longrightarrow$  diameter of G is  $< 3k_{\ell}$  $\Longrightarrow$  two overlaping  $\vec{C_1}, \vec{C_2}$  of lengths  $a_1, a_2$  with  $gcd(a_1, a_2) < k_{\ell}$  $\Longrightarrow$  closed walk in G of length  $\ell$  if  $\ell \geq 10.5k_{\ell}^2$  (works for  $k_{\ell} \geq 8$ )



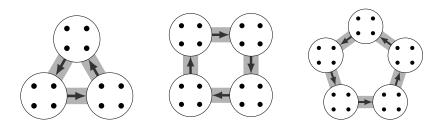
Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

 $\delta^{\pm}(G)$  bound  $\Longrightarrow$  arc  $u \to w$  & path from u to w of length  $\leq k_{\ell}/2$ Caccetta-Häggvist result for  $\bigwedge \Longrightarrow$  diameter of G is  $< 3k_{\ell}$  $\Longrightarrow$  two overlaping  $\vec{C_1}, \vec{C_2}$  of lengths  $a_1, a_2$  with  $gcd(a_1, a_2) < k_{\ell}$  $\Longrightarrow$  closed walk in G of length  $\ell$  if  $\ell \geq 10.5k_{\ell}^2$  (works for  $k_{\ell} \geq 8$ ) +Flag A for  $k_{\ell} \in \{4, 5\}$  yield  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow$  closed walk of length  $\ell$ 



#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

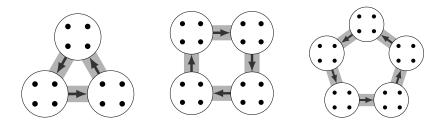


#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

Kelly-Kühn-Osthus ('10): true for  $k_{\ell} = 3$ 

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ 

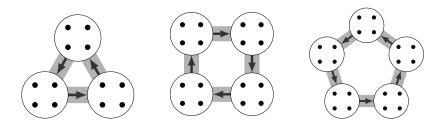


#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

Kelly-Kühn-Osthus ('10): true for  $k_{\ell} = 3$ 

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ Glebov-Grzesik-JV: "true" for  $\ell = 6$  and asymp. true for all  $\ell \geq 9$ 

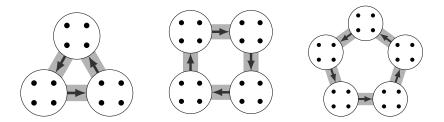


#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

Kelly-Kühn-Osthus ('10): true for  $k_{\ell} = 3$ 

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ Glebov-Grzesik-JV: "true" for  $\ell = 6$  and asymp. true for all  $\ell \ge 9$ Question: *G n*-vertex oriented *G* with  $\delta^{\pm}(G) > \left\lceil \frac{n}{k_{\ell}} \right\rceil \Rightarrow \vec{C}_{\ell} \in G$ ?



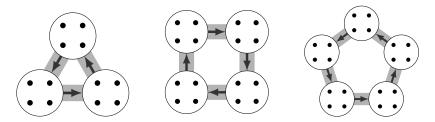
#### Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

Kelly-Kühn-Osthus ('10): true for  $k_{\ell} = 3$ 

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ Glebov-Grzesik-JV: "true" for  $\ell = 6$  and asymp. true for all  $\ell \ge 9$ Question: *G n*-vertex oriented *G* with  $\delta^{\pm}(G) > \left\lceil \frac{n}{k_{\ell}} \right\rceil \Rightarrow \vec{C}_{\ell} \in G$ ? Conjecture (The out-degree version)

Fix  $\ell \geq 4, n \geq n_0$ . G n-vertex oriented with  $\delta^+(G) \gg \frac{n}{k_\ell} \Rightarrow \vec{C}_\ell \in G$ 



# Conclusion Thank you for your attention!

Conjecture (Kelly-Kühn-Osthus, 2010)

Fix  $\ell \geq 4$ ,  $n \geq n_0$ . G n-vertex oriented with  $\delta^{\pm}(G) > \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where  $k_{\ell}$  is the smallest integer  $\geq 3$  that does not divide  $\ell$ 

Kelly-Kühn-Osthus ('10): true for  $k_{\ell} = 3$ 

Kühn-Osthus-Piguet ('13):  $\forall k$  asymp.true  $\ell$  large enough &  $k_{\ell} = k$ Glebov-Grzesik-JV: "true" for  $\ell = 6$  and asymp. true for all  $\ell \ge 9$ Question: *G n*-vertex oriented *G* with  $\delta^{\pm}(G) > \left\lceil \frac{n}{k_{\ell}} \right\rceil \Rightarrow \vec{C}_{\ell} \in G$ ? Conjecture (The out-degree version)

Fix  $\ell \geq 4, n \geq n_0$ . G n-vertex oriented with  $\delta^+(G) \gg \frac{n}{k_\ell} \Rightarrow \vec{C}_\ell \in G$ 

