On degree thresholds of cycles in oriented graphs

Jan Volec
MSCA global fellow at Emory University \& Universität Hamburg
joint work with Roman Glebov and Andrzej Grzesik

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 800607.

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains Λ.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$ G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.

Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$ G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.
Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$ G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.
Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$ G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture (1978)

An n-vertex digraph G with minimum out-degree $\delta^{+}(G)$ at least k contains an oriented cycle of length at most $\lceil n / k\rceil$.
Theorem (Shen, 2000): C-H conjecture holds for $k \leq \sqrt{n / 2}$.
The triangle case of $\mathrm{C}-\mathrm{H}$ conjecture - widely open Every n-vertex oriented G with $\delta^{+}(G) \geq n / 3$ contains \triangle.

$3 k+1$ vertices, connect each vertex $i \rightarrow i+1, i+2, \ldots, i+k$ G and H extremal graphs $\longrightarrow G \times H$ lexicographic product

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq \frac{1}{3} n$ contains \triangle.

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq c n$ contains \triangle.

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq c n$ contains \triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq c n$ contains \triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq c n$ contains \triangle.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$
- Shen (1998): $c<3-\sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c <0.3531

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq c n$ contains Δ.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$
- Shen (1998): $c<3-\sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c <0.3531
- Hladký, Král', Norin (2009): c < 0.3465
- Razborov (2011): if G is $\left\{F_{1}, F_{2}, F_{3}\right\}$-free, then C-H holds

Caccetta-Häggvist conjecture: The triangle case

Every n-vertex oriented G with $\delta^{+}(G) \geq c n$ contains Δ.

- Caccetta-Häggkvist (1978): $c<(3-\sqrt{5}) / 2 \approx 0.3819$
- Bondy (1997): $c<(2 \sqrt{6}-3) / 5 \approx 0.3797$
- Shen (1998): $c<3-\sqrt{7} \approx 0.3542$
- Hamburger, Haxell, Kostochka (2007): c <0.3531
- Hladký, Král', Norin (2009): c < 0.3465
- Razborov (2011): if G is $\left\{F_{1}, F_{2}, F_{3}\right\}$-free, then C-H holds

- Sereni, De Joannis De Verclos, JV: c < 0.339

The C-H conjecture and around: semi-degree thresholds
semi-degree of $G: \delta^{ \pm}(G):=\min \left(\delta^{+}(G), \delta^{-}(G)\right)$

The C-H conjecture and around: semi-degree thresholds
semi-degree of $G: \delta^{ \pm}(G):=\min \left(\delta^{+}(G), \delta^{-}(G)\right)$
Conjecture (Behzad-Chartrand-Wall, 1970)
Every n-vertex oriented G with $\delta^{ \pm}(G) \geq \frac{n}{3}$ contains \triangle.

The C-H conjecture and around: semi-degree thresholds
semi-degree of $G: \delta^{ \pm}(G):=\min \left(\delta^{+}(G), \delta^{-}(G)\right)$
Conjecture (Behzad-Chartrand-Wall, 1970)
Every n-vertex oriented G with $\delta^{ \pm}(G) \geq \frac{n}{3}$ contains \triangle.

Theorem (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{3} \Rightarrow \vec{C}_{\ell} \in G$

The C-H conjecture and around: semi-degree thresholds
semi-degree of $G: \delta^{ \pm}(G):=\min \left(\delta^{+}(G), \delta^{-}(G)\right)$
Conjecture (Behzad-Chartrand-Wall, 1970)
Every n-vertex oriented G with $\delta^{ \pm}(G) \geq \frac{n}{3}$ contains \triangle.

Theorem (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{3} \Rightarrow \vec{C}_{\ell} \in G$
If ℓ not multiple of 3 , then best possible!

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for $k_{\ell}=3$.

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for $k_{\ell}=3$.
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough $\& k_{\ell}=k$

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for $k_{\ell}=3$.
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough $\& k_{\ell}=k$
Talk today: The most difficult case: $\ell=6$

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for $k_{\ell}=3$.
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough $\& k_{\ell}=k$
Talk today: The most difficult case: $\ell=6$ i.e $\delta^{ \pm}$threshold $\vec{C}_{6}=\frac{1}{4}$

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for $k_{\ell}=3$.
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough $\& k_{\ell}=k$
Talk today: The most difficult case: $\ell=6$ i.e $\delta^{ \pm}$threshold $\vec{C}_{6}=\frac{1}{4}$

Conjecture of Kelly-Kühn-Osthus on $\delta^{ \pm}$thresholds

For $\ell \in \mathbb{N} \longrightarrow k_{\ell}:=$ the smallest integer ≥ 3 that does not divide ℓ Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ Kelly-Kühn-Osthus ('10): TRUE for $k_{\ell}=3$.
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough $\& k_{\ell}=k$
Talk today: The most difficult case: $\ell=6$ i.e $\delta^{ \pm}$threshold $\vec{C}_{6}=\frac{1}{4}$

Stronger conjecture: G n-vertex oriented $\delta^{+}(G) \gg \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$?

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Corollary': $N^{+}(w)$ and $N^{-}(w)$ are acyclic for every vertex $w \in G$

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Corollary': $N^{+}(w)$ and $N^{-}(w)$ are acyclic for every vertex $w \in G$ if \exists oriented path xyz in $N^{+}(w)$ then use $z \rightarrow w$ path $\Rightarrow \vec{C}_{3}$ or \vec{C}_{6}

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Corollary': $N^{+}(w)$ and $N^{-}(w)$ are acyclic for every vertex $w \in G$ if \exists oriented path xyz in $N^{+}(w)$ then use $z \rightarrow w$ path $\Rightarrow \vec{C}_{3}$ or \vec{C}_{6}

Corollary": $\forall s, t$: there is oriented path from s to t of length ≤ 4

Sketch of the proof of $\delta^{ \pm}$threshold for $\vec{C}_{6}=1 / 4$
Let G be N-vertex oriented graph with $\delta^{ \pm} \gg 0.25 N \Longrightarrow \vec{C}_{6} \in G$
Claim: $\delta^{+}(H) \geq 0.26 n \Rightarrow \vec{C}_{6} \longleftrightarrow$ no $\vec{C}_{6} \Rightarrow \exists u \operatorname{deg}^{+}(u)<0.26 n$ $\exists v \operatorname{deg}^{-}(v)<0.26 n$
(By \triangle removal lemma, we may also assume no \triangle)
Corollary: $\forall s, t \in G$: there is oriented path $s \longrightarrow t$ of length ≤ 5

Corollary': $N^{+}(w)$ and $N^{-}(w)$ are acyclic for every vertex $w \in G$ if \exists oriented path xyz in $N^{+}(w)$ then use $z \rightarrow w$ path $\Rightarrow \vec{C}_{3}$ or \vec{C}_{6}
Corollary": $\forall s, t$: there is oriented path from s to t of length ≤ 4 Do Corollary again but inside $N^{+}(s) \& N^{-}(t)$ pick sink (source)

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$
\sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)
$$

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs
$0 \leq \sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)$ for every n-vertex G with $\# \triangle=0$

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$
0 \leq \sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)
$$

for every n-vertex G with $\# \triangle=0$
Powerful tool, shed light to many open problems

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs

$$
0 \leq \sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)
$$

for every n-vertex G with $\# \triangle=0$
Powerful tool, shed light to many open problems

Typical instance max \#copies of H in G s.t. constraints on G G large

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs
$0 \leq \sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)$
for every n-vertex G with $\# \triangle=0$
Powerful tool, shed light to many open problems

Typical instance max \#copies of H in G s.t. constraints on G G large
Idea: use relaxation, optimize over superset \longrightarrow semidefinite prg

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs
$0 \leq \sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)$
for every n-vertex G with $\# \triangle=0$
Powerful tool, shed light to many open problems

Typical instance max \#copies of H in G s.t. constraints on G G large
Idea: use relaxation, optimize over superset \longrightarrow semidefinite prg
Duality find specific $\mathbb{E}(\cdots)^{2} \geq 0$ inequalities \rightarrow generates proof

Main tool: Flag Algebra framework

Razborov (2010): systematic approach to extremal combinatorics Analyze (dense) large graphs via relations between small subgraphs
$0 \leq \sum_{u}\left(\frac{n}{2}-\operatorname{deg}(u)\right)^{2}-3 \times \# \bigwedge+\# \bullet \approx n \times\left(\frac{n^{2}}{4}-e(G)\right)$
for every n-vertex G with $\# \triangle=0$
Powerful tool, shed light to many open problems

Typical instance max \#copies of H in G s.t. constraints on G G large
Idea: use relaxation, optimize over superset \longrightarrow semidefinite prg
Duality find specific $\mathbb{E}(\cdots)^{2} \geq 0$ inequalities \rightarrow generates proof Such search can automatized and computer assisted (SDP solvers)

The exact value of semi-degree threshold for \vec{C}_{6}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ

The exact value of semi-degree threshold for \vec{C}_{6}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
For $\ell=6$ they conjecture: $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+1 \Longrightarrow \vec{C}_{6} \in G$

The exact value of semi-degree threshold for \vec{C}_{6}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
For $\ell=6$ they conjecture: $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+1 \Longrightarrow \vec{C}_{6} \in G$ FALSE!

The exact value of semi-degree threshold for \vec{C}_{6}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
For $\ell=6$ they conjecture: $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+1 \Longrightarrow \vec{C}_{6} \in G$ FALSE!

The exact value of semi-degree threshold for \vec{C}_{6}
Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
For $\ell=6$ they conjecture: $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+1 \Longrightarrow \vec{C}_{6} \in G$ FALSE!

The exact value of semi-degree threshold for \vec{C}_{6}
Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
For $\ell=6$ they conjecture: $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+1 \Longrightarrow \vec{C}_{6} \in G$ FALSE!
Theorem (Glebov-Grzesik-JV): $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+2 \Longrightarrow \vec{C}_{6} \in G$

The exact value of semi-degree threshold for \vec{C}_{6}
Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
For $\ell=6$ they conjecture: $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+1 \Longrightarrow \vec{C}_{6} \in G$ FALSE!
Theorem (Glebov-Grzesik-JV): $\delta^{ \pm}(G) \geq\left\lfloor\frac{n}{4}\right\rfloor+2 \Longrightarrow \vec{C}_{6} \in G$
Similarly $G_{\ell}: \delta^{ \pm}\left(G_{\ell}\right)=\left\lfloor\frac{n}{k_{\ell}}\right\rfloor+1$ but no \vec{C}_{ℓ} (except $k_{\ell}=4 \& \ell \equiv 3$)

Semi-degree thresholds for longer oriented cycles C_{ℓ}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ

Semi-degree thresholds for longer oriented cycles C_{ℓ}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
$\delta^{ \pm}(G)$ bound $\Longrightarrow \operatorname{arc} u \rightarrow w$ \& path from u to w of length $\leq k_{\ell} / 2$

Semi-degree thresholds for longer oriented cycles C_{ℓ}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
$\delta^{ \pm}(G)$ bound $\Longrightarrow \operatorname{arc} u \rightarrow w$ \& path from u to w of length $\leq k_{\ell} / 2$
Caccetta-Häggvist result for $\Delta \Longrightarrow$ diameter of G is $<3 k_{\ell}$

Semi-degree thresholds for longer oriented cycles C_{ℓ}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
$\delta^{ \pm}(G)$ bound \Longrightarrow arc $u \rightarrow w$ \& path from u to w of length $\leq k_{\ell} / 2$
Caccetta-Häggvist result for $\triangle \Longrightarrow$ diameter of G is $<3 k_{\ell}$
\Longrightarrow two overlaping $\overrightarrow{C_{1}}, \overrightarrow{C_{2}}$ of lengths a_{1}, a_{2} with $\operatorname{gcd}\left(a_{1}, a_{2}\right)<k_{\ell}$

Semi-degree thresholds for longer oriented cycles C_{ℓ}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
$\delta^{ \pm}(G)$ bound $\Longrightarrow \operatorname{arc} u \rightarrow w$ \& path from u to w of length $\leq k_{\ell} / 2$
Caccetta-Häggvist result for $\Delta \Longrightarrow$ diameter of G is $<3 k_{\ell}$
\Longrightarrow two overlaping \vec{C}_{1}, \vec{C}_{2} of lengths a_{1}, a_{2} with $\operatorname{gcd}\left(a_{1}, a_{2}\right)<k_{\ell}$
\Longrightarrow closed walk in G of length ℓ if $\ell \geq 10.5 k_{\ell}^{2}$ (works for $k_{\ell} \geq 8$)

Semi-degree thresholds for longer oriented cycles C_{ℓ}

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
$\delta^{ \pm}(G)$ bound $\Longrightarrow \operatorname{arc} u \rightarrow w$ \& path from u to w of length $\leq k_{\ell} / 2$
Caccetta-Häggvist result for $\Delta \Longrightarrow$ diameter of G is $<3 k_{\ell}$
\Longrightarrow two overlaping \vec{C}_{1}, \vec{C}_{2} of lengths a_{1}, a_{2} with $\operatorname{gcd}\left(a_{1}, a_{2}\right)<k_{\ell}$
\Longrightarrow closed walk in G of length ℓ if $\ell \geq 10.5 k_{\ell}^{2}$ (works for $k_{\ell} \geq 8$) + Flag A for $k_{\ell} \in\{4,5\}$ yield $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow$ closed walk of length ℓ

Conclusion

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ

Conclusion

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ

Kelly-Kühn-Osthus ('10): true for $k_{\ell}=3$
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough $\& k_{\ell}=k$

Conclusion

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ Kelly-Kühn-Osthus ('10): true for $k_{\ell}=3$
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough \& $k_{\ell}=k$ Glebov-Grzesik-JV: "true" for $\ell=6$ and asymp. true for all $\ell \geq 9$

Conclusion

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
Kelly-Kühn-Osthus ('10): true for $k_{\ell}=3$
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough \& $k_{\ell}=k$ Glebov-Grzesik-JV: "true" for $\ell=6$ and asymp. true for all $\ell \geq 9$ Question: G n-vertex oriented G with $\delta^{ \pm}(G)>\left\lceil\frac{n}{k_{\ell}}\right\rceil \Rightarrow \vec{C}_{\ell} \in G$?

Conclusion

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
Kelly-Kühn-Osthus ('10): true for $k_{\ell}=3$
Kühn-Osthus-Piguet ('13): $\forall k$ asymp. true ℓ large enough \& $k \ell=k$ Glebov-Grzesik-JV: "true" for $\ell=6$ and asymp. true for all $\ell \geq 9$ Question: G n-vertex oriented G with $\delta^{ \pm}(G)>\left\lceil\frac{n}{k_{\ell}}\right\rceil \Rightarrow \vec{C}_{\ell} \in G$? Conjecture (The out-degree version)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{+}(G) \gg \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$

Conclusion Thank you for your attention!

Conjecture (Kelly-Kühn-Osthus, 2010)
Fix $\ell \geq 4, n \geq n_{0}$. G n-vertex oriented with $\delta^{ \pm}(G)>\frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$ where k_{ℓ} is the smallest integer ≥ 3 that does not divide ℓ
Kelly-Kühn-Osthus ('10): true for $k_{\ell}=3$
Kühn-Osthus-Piguet ('13): $\forall k$ asymp.true ℓ large enough \& $k_{\ell}=k$
Glebov-Grzesik-JV: "true" for $\ell=6$ and asymp. true for all $\ell \geq 9$ Question: G n-vertex oriented G with $\delta^{ \pm}(G)>\left\lceil\frac{n}{k_{\ell}}\right\rceil \Rightarrow \vec{C}_{\ell} \in G$?
Conjecture (The out-degree version)
Fix $\ell \geq 4, n \geq n_{0}$. $G n$-vertex oriented with $\delta^{+}(G) \gg \frac{n}{k_{\ell}} \Rightarrow \vec{C}_{\ell} \in G$

