MATH 350: Graph Theory and Combinatorics. Fall 2016. Assignment \#3: Menger's theorem and network flows

Due Wednesday, November 2nd, 2016, 14:30

1. Let $G=(V, E)$ be a simple graph and let $U \subseteq V$. We define $G \oplus_{U}\{v\}$ to be the graph obtained from G by adding a new vertex v, which is then joined to every vertex in U. In other words, $G \oplus_{U}\{v\}=(V \cup\{v\}, E \cup\{\{u, v\}: u \in U\})$.
a) Prove that if $G=(V, E)$ is a k-connected simple graph and $U \subseteq V$ has size k, then the graph $G \oplus_{U}\{v\}$ is k-connected as well.
b) For every integer $k \geq 1$, find a simple graph $G_{k}=\left(V_{k}, E_{k}\right)$ on at least $k+1$ vertices and a vertex-subset $U \subseteq V_{k}$ of size k such that G_{k} is not k-connected, however, $G_{k} \oplus_{U}\{v\}$ is k-connected.
2. Let $G=(V, E)$ be a k-connected simple graph and $U, W \subseteq V$ two vertex-subsets, each of size k. Prove that there exist k pairwise vertex-disjoint paths $P_{1}, \ldots P_{k}$ such that for every $i \in\{1, \ldots, k\}$, the path P_{i} have one endpoint in U and the other endpoint in W.
[Hint: Use the previous exercise.]
3. Let $G=(V, E)$ be a 2-connected simple graph. Show that for any triple of distinct vertices $u, v, w \in V$ there is a path in G from u to v passing through w, i.e., w is one of the inner vertices of the path.
4. Let $G=(V, E)$ be a 2-connected simple graph and $v \in V$ a vertex of G. Prove that there exists a vertex $u \in V$ such that $\{u, v\} \in E$ and the graph $G-u-v$ is connected.
5. Let $G=(V, E)$ be a directed graph (digraph) and for each edge $e \in E$, let $\phi(e) \geq 0$ be a non-negative integer. Show that if for every vertex v

$$
\sum_{e \in \partial^{-}(v)} \phi(e)=\sum_{e \in \partial^{+}(v)} \phi(e)
$$

then there is a collection of directed cycles C_{1}, \ldots, C_{k} (possibly with repetition) so that for every edge e of G, it holds that

$$
\left|\left\{i: 1 \leq i \leq k, e \in E\left(C_{i}\right)\right\}\right|=\phi(e)
$$

