MATH 350: Graph Theory and Combinatorics. Fall 2016. Assignment #5: Edge-colorings, Line graphs, Planar graphs

Due Wednesday, November 30th, 2016, 14:30

1. Recall the Petersen graph depcited in Figure 1.	1.	Recall	the	Petersen	graph	depcited	in	Figure 1.	
---	----	--------	-----	----------	-------	----------	----	-----------	--

- a) Show that the Petersen graph has no 3-edge-coloring. (2 points)
- b) Does the Petersen graph have a Hamilton cycle? (1 point)
- c) Find a 4-edge-coloring of the Petersen graph. (1 point)

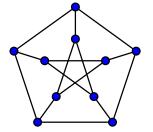


Figure 1: The Petersen graph

2. For $n \ge 2$, use the following steps to determine $\chi'(K_n)$ and construct an optimal edgecoloring.

- a) For any odd integer $n \ge 3$, show that the complete graph K_n does not have an edge-coloring with $\Delta(K_n) = n 1$ colors.
- b) For any odd integer $n \ge 3$, prove that if c is an edge-coloring of K_n with n colors, then each color class of c contains (n-1)/2 edges. (Note that $\chi'(K_n) \le n$ by Vizing's Theorem.)
- c) For any even integer $n \ge 2$, show that $\chi'(K_n) = n 1$.
- **d)** For any integer $n \ge 2$, explicitly construct an edge-coloring of K_n with $\chi'(K_n)$ colors. [*Hint: for n odd, put* $V(K_n) = \{0, ..., n-1\}$ and color the edge $\{i, j\}$ with $(i + j) \mod n$.]

3. Let G = (V, E) be a loopless multigraph. Recall that a *line graph* of G, which we denote by L(G), is a simple graph H with the vertex set E, and two vertices e and f of H are adjacent if and only if the corresponding two edges in G are incident to the same vertex. In other words, H = (E, F) where $F = \{\{e, f\} : e \cap f \neq \emptyset\}$.

- a) Let G = (V, E) be a loopless connected multigraph with an <u>even</u> number of edges, i.e., |E| is even. Show that the graph L(G) has a perfect matching. [*Hint: use Tutte's Theorem.*]
- b) Let G = (V, E) be a loopless connected multigraph with an <u>odd</u> number of edges. Show that L(G) has a matching of size $\frac{|E|-1}{2}$.

Please turn to the other side.

4. Let G = (V, E) be a planar graph drawn in the plane. Suppose that there exists a vertex v so that v belongs to the boundary of every region. Show that

$$\alpha(G) \ge \frac{|V| - 1}{2}.$$

5. Recall a simple graph G is called *outerplanar* if it can be drawn in the plane so that every vertex is incident with the infinite region.

Let G = (V, E) be a connected outerplanar graph with $|V| \ge 3$.

a)	Prove that G contains two vertices of degree at most 2.	(1 point)
b)	Is it true that G necessarily contains three vertices of degree at most 2?	(1 point)
c)	Without using the 4-Color Theorem, show that $\chi(G) \leq 3$.	$(2 \ points)$

Bonus question. This question is worth additional 5 points on top of the standard 20 points. Show that a graph G is outerplanar if and only if G contains no K_4 -minor and no $K_{2,3}$ -minor.