
A matching in a graph G = (V,E) is a set of edges M ⊆ E such that
every vertex v ∈ V is an endpoint of at most one edge in M . A matching
is called perfect, if every v ∈ V is incident to exactly one edge in M . For
a bipartite graph G with parts A and B, we say that a matching M is
A-covering, if every vertex v ∈ A is incident to exactly one edge.

For a graph G = (V,E) and a set U ⊆ V , let

NG(U) := {x ∈ V |{u, x} ∈ E for some u ∈ U}

be the neighborhood of U in G.

Theorem 1 (Hall’s Theorem). Let G be a bipartite graph with parts A and
B. G contains an A-covering matching if and only if |NG(A′)| ≥ |A′| for all
A′ ⊆ A.

Proof. The condition |NG(A′)| ≥ |A′| for all A′ ⊆ A, which we will call the
Hall’s condition, is clearly satisfied if G contains an A-covering (because
there are |A′| vertices in B that are incident to the edges of an A-covering
matching, and every such vertex is contained in NG(A′)).

For the rest of the proof, we focus on showing that if a graph G satisfies
the Hall’s condition, then it contains an A-covering matching. We proceed
by induction on |A|. If |A| = 1, then the Hall’s condition applied to A′ = A
guarantees that the single vertex v ∈ A has at least one neighbor. Let w ∈ B
be one such a neighbor. It follows that {v, w} is an A-covering matching.

Suppose |A| ≥ 2. We consider the following two exclusive options:

1. there exists A0 such that ∅ ( A0 ( A and |NG(A0)| = |A0|,

2. for every A′ such that ∅ ( A′ ( A, we have |NG(A′)| ≥ 1 + |A′|.

Let us start with the second option. Fix an arbitrary v ∈ A. By the Hall’s
condition, v has at least one neighbor, say w ∈ B. Define G′ := G−v−w. If
we manage to verify the Hall’s condition for G′, we can apply induction and
obtain (A \ {v})-covering matching M ′. It follows that M := M ′ ∪{v, w} is
then an A-covering matching in G. So it remains to check that |NG′(A′)| ≥
|A′| for every non-empty A′ ⊆ A \ {v}. We claim this follows from that
“additional +1” we have in the second option. Indeed,

|NG′(A′)| ≥ |NG(A′)| − 1 ≥ |A′|+ 1− 1 = |A′|,

where the first inequality follows from the fact that NG′(A′) may differ
from NG(A′) only on the vertex {w}, and the second inequality uses the
“additional +1”.
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It remains to resolve the first option, where there is some non-empty
A0 ( A such that |NG(A0)| = |A0|. Let A1 := A \ A0 and, let G0 be the
subgraph of G induced by V \ A1. Our aim is to apply induction on G0

in order to find an A0-covering matching in G0. To do so, it is enough
to verify whether G0 satisfies the Hall’s condition. But this follows easily:
for every A′ ⊆ A0 it holds that NG0(A′) = NG(A′), and by the assumption
|NG(A′)| ≥ |A′|, we know that |NG0(A′)| ≥ |A′|must hold as well. Therefore,
there exists an A0-covering matching M0 in G0, which is also a matching
in G.

The only remaining task is to find a matching M1 that will cover the
vertices in A1 and will be “compatible” with M0, which means, the union
M0 ∪M1 will be a matching in G. Let G1 be the subgraph of G induced
by V \ (A0 ∪NG(A0)). Our aim is to use the induction hypothesis once
again, this time in order to find an A1-covering matching in the graph G1.
If we want to use induction (again?), we need to verify the Hall’s condition
(again!), this time on the graph G1. In other words, we need to show that
|NG1(A′)| ≥ |A′| for every A′ ⊆ A1. We claim that the desired inequality
for a fixed A′ follows from the Hall’s condition for G applied to the set
A′′ := A0 ∪A′. Indeed, on one hand

|NG(A′′)| = |NG(A0)|+ |NG(A′) \NG(A0)| = |A0|+ |NG1(A′)|,

where we used that |A0| = |NG(A0)| and NG(A′) \NG(A0) = NG1(A′). On
the other hand,

|A′′| = |A0|+ |A′|,

simply because the sets A0 and A′ are disjoint. Putting these two equations
together with the assumption |NG(A′′)| ≥ |A′′| yields that

|NG1(A′)| = |NG(A′′)| − |A0| ≥ |A′′| − |A0| = |A′|+ |A0| − |A0| = |A′|.

Voila, the graph G1 satisfies the Hall’s condition, induction can be applied,
and provides us an A1-covering matching M1, which by the construction of
G1 is completely disjoint from M0. Therefore, M0 ∪M1 is a matching in G
that is A-covering.
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