A matching in a graph G = (V, E) is a set of edges M C FE such that
every vertex v € V is an endpoint of at most one edge in M. A matching
is called perfect, if every v € V is incident to exactly one edge in M. For
a bipartite graph G with parts A and B, we say that a matching M is
A-covering, if every vertex v € A is incident to exactly one edge.

For a graph G = (V, E) and aset U C V, let

Ng(U) :={z € V[{u,x} € E for some u € U}
be the neighborhood of U in G.

Theorem 1 (Hall’s Theorem). Let G be a bipartite graph with parts A and
B. G contains an A-covering matching if and only if [Ng(A')| > |A'| for all
A C A.

Proof. The condition |Ng(A’)| > |A’| for all A” C A, which we will call the
Hall’s condition, is clearly satisfied if G' contains an A-covering (because
there are |A’| vertices in B that are incident to the edges of an A-covering
matching, and every such vertex is contained in Ng(A4')).

For the rest of the proof, we focus on showing that if a graph G satisfies
the Hall’s condition, then it contains an A-covering matching. We proceed
by induction on |A]|. If |[A] = 1, then the Hall’s condition applied to A’ = A
guarantees that the single vertex v € A has at least one neighbor. Let w € B
be one such a neighbor. It follows that {v,w} is an A-covering matching.

Suppose |A| > 2. We consider the following two exclusive options:

1. there exists Ay such that ) C Ag € A and |Ng(Ao)| = |Aol,
2. for every A" such that ) C A" C A, we have |[Ng(A")| > 1+ |A'|.

Let us start with the second option. Fix an arbitrary v € A. By the Hall’s
condition, v has at least one neighbor, say w € B. Define G' := G—v—w. If
we manage to verify the Hall’s condition for G’, we can apply induction and
obtain (A \ {v})-covering matching M’. It follows that M := M'U{v,w} is
then an A-covering matching in G. So it remains to check that |Ng/(A')| >
|A’| for every non-empty A" C A\ {v}. We claim this follows from that
“additional +1” we have in the second option. Indeed,

[Ner (AN = [Ng(A)| =1 = [A]+1 - 1= |A,

where the first inequality follows from the fact that Ng/(A') may differ
from Ng(A’) only on the vertex {w}, and the second inequality uses the
“additional +1”.



It remains to resolve the first option, where there is some non-empty
Ap € A such that |[Ng(Ap)| = |Ao|- Let Ay := A\ Ao and, let Gy be the
subgraph of G induced by V' \ A;. Our aim is to apply induction on Gy
in order to find an Ag-covering matching in Gy. To do so, it is enough
to verify whether Gq satisfies the Hall’s condition. But this follows easily:
for every A’ C Ay it holds that Ng,(A') = Ng(A'), and by the assumption
|ING(A")| > |A'|, we know that [Ng,(A")| > |A’| must hold as well. Therefore,
there exists an Agp-covering matching My in Gg, which is also a matching
in G.

The only remaining task is to find a matching M; that will cover the
vertices in A1 and will be “compatible” with My, which means, the union
My U My will be a matching in G. Let G1 be the subgraph of G induced
by V' \ (Ao U Ng(Ap)). Our aim is to use the induction hypothesis once
again, this time in order to find an Aj-covering matching in the graph Gj.
If we want to use induction (again?), we need to verify the Hall’s condition
(again!), this time on the graph G;. In other words, we need to show that
NG, (A")| > |A| for every A" C A;. We claim that the desired inequality
for a fixed A’ follows from the Hall’s condition for G applied to the set
A" := Ay U A’. Indeed, on one hand

INa(A")| = [Na(Ao)| + [Na(A') \ Ne(Ao)| = [Ao| + [ Ne, (4],

where we used that |Ag| = |[Ng(Ao)| and Ng(A') \ Ng(Ao) = Ng, (47). On
the other hand,
|A"| = |Ao| +]47),

simply because the sets Ag and A’ are disjoint. Putting these two equations
together with the assumption |Ng(A”)| > |A”| yields that

NG, (A = [Na(A")] = |Ao| = |A"] = |Ao| = |A"| + [Ao| — | 4| = |A'].

Voila, the graph G satisfies the Hall’s condition, induction can be applied,
and provides us an Aj-covering matching Mi, which by the construction of
(G1 is completely disjoint from Mjy. Therefore, My U M; is a matching in G
that is A-covering. O



