
MATH 350: Graph Theory and Combinatorics. Fall 2016.

Assignment #1: Paths, Cycles and Trees

Due Wednesday, October 5th, 2016, 14:30

1. For each of the following statements decide whether it is true or false, and either prove it, or
give a counterexample.

a) Let G be a graph on n ≥ 2 vertices with the vertex set V = {v1, . . . , vn}. There exists two
distinct vertices vi and vj such that deg(vi) = deg(vj).

Solution: The question was stated ambigously, since the answer depends on whether we
consider only simple graphs or not. Both answers will be accepted, if they were correctly
argued.

If we assume that G is simple, then the statement is True. Every vertex in G has the degree
between 0 and n − 1, and there are n vertices in total. If all the degrees would be different,
then G must contain a vertex u with deg(u) = 0, and a vertex v with deg(v) = n − 1.
However, that means that u is an isolated vertex (in particular, u is not adjacent to v), and
v is a vertex adjacent to all the n− 1 vertices different from v (in particular, v is adjacent to
u); a contradiction.

If G does not have to be simple, so in particular, multiple edges are allowed, the statement
is False, as can be seen in Figure 1.

Figure 1: A counterexample for Problem 1a) in the case G does not have to be a simple graph.

b) Let G be a graph and u, v, w be three vertices of G. If there is a cycle in G containing u and
v, and a cycle containing v and w, then there is a cycle containing u and w.

Solution: False. See Figure 2.

c) Let G be a graph and e, f, g be three edges of G. If there is a cycle in G containing e and f ,
and a cycle containing f and g, then there is a cycle containing e and g.

Solution: True. Let e = {u1, v1} and f = {u2, v2}. Fix an arbitrary cycle C1 containing e
and f . Without loss of generality,

C1 = u2, . . . , u1︸ ︷︷ ︸
P

, e, v1, . . . , v2︸ ︷︷ ︸
Q

, f, u2

where P and Q are the paths on C1 between u1 and u2, and v1 and v2, respectively, that
both avoid the edges e and f . Clearly, P and Q are vertex-disjoint.
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Figure 2: A counterexample for Problem 1b).

Now, let C2 be a cycle containing f and g. We may assume C2 does not contain the edge
e, otherwise there is nothing to prove. Define p to be the first vertex on P starting from u1
that is contained in C2. Such a vertex must exist, since u2 is a vertex of C2 (note it might be
that p = u1). Analogously, let q be the first vertex on Q starting from v1 that is contained in
C2 (again, it might be that q = v1). Let R1 be the path on C1 between p and q that contains
the edge e. It follows from the construction that V (R1) ∩ V (C2) = {p, q}. Now set R2 to be
the path on C2 between p and q that contains the edge g. The union of the edges of R1 and
R2 forms a cycle that contains both e and g.

d) Let T be a tree on n vertices and let v ∈ V (T ) be a vertex of degree k. Then T contains at
least k leaves, i.e., vertices of degree 1.

Solution: True. Let L be the set of leaves in T . Since T is a tree, |V (T )| = |E(T )|+ 1. On
the other hand,

2|V (T )| − 2 = 2|E(T )| =
∑

u∈V (T )

deg(u) = |L|+ k +
∑

u∈V (T )\L
u6=v

deg(u).

Since every vertex u ∈ V \ L has degree at least 2, it follows that∑
u∈V (T )\L

u6=v

deg(u) ≥ 2(|V (T )| − |L| − 1) = 2|V (T )| − 2|L| − 2.

Combining the two derivations together, we conclude that

2|V (T )| − 2 ≥ |L|+ k + 2|V (T )| − 2|L| − 2 = k − |L|+ 2|V (T )| − 2,

which after rearranging the terms yields |L| ≥ k.

2. Let G = (V,E) be a graph, and let G be the complement of G, i.e., the graph (V,E), where
E :=

(
V
2

)
\ E. Show that if G is not connected, then G is connected.

Solution: Let C be an arbitrary connected component of G, and let D := V (G)\C. Since G is not
connected, D 6= ∅. Fix two vertices u ∈ C and v ∈ D. It follows that in the graph G, any vertex
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in C is connected to any vertex in D by an edge. Moreover, for any two vertices c1, c2 ∈ C, there
is a path of length two in G between c1 and c2 via v. Analogously, for any two vertices d1, d2 ∈ D,
there is a path of length two between d1 and d2 via u. So G is connected.

3. Let G be a graph with |V (G)| ≥ 1 where for every pair of vertices u, v ∈ V (G), there is a path
in G from u to v of length at most k. Show that if G is not a tree, then it contains a cycle of length
at most 2k + 1.

Solution: Clearly, G is connected and contains a cycle. Let C be a cycle in G of the smallest length
and let v1, v2, . . . , v` be the vertices of C in order. Suppose for a contradiction that ` ≥ 2k + 2.
Let P be the shortest path from v1 to vk+2 in G. Then P has length at most k and it follows that
P ( C. Thus there exists a subpath Q of P with distinct ends vi, vj ∈ V (P ) and otherwise disjoint
from C. The union of Q with each of the two paths in C with ends vi and vj is a cycle, and so
each of these cycles must have length at least `. The sum of their lengths, however, is equal to
` + 2|E(Q)| ≤ ` + 2|E(P )| ≤ ` + 2k < 2`, a contradiction.

4. Let G be a connected graph which contains no path with length larger than k. Show that
every two paths in G of length k have at least one vertex in common.

Solution: Suppose for a contradiction that P1 and P2 are two vertex-disjoint paths of length k.
Let vertices of Pi, where 1 ≤ i ≤ 2, be vi1, v

i
2, . . . , v

i
k+1, in order. Let Q be a path with one end in

V (P1) and another in V (P2) chosen to be as short as possible. Let v1n and v2m be the ends of Q,
where 1 ≤ n,m ≤ k + 1. We can suppose without loss of generality that m,n ≥ dk/2 + 1e. Then a
path obtained by taking the union of the subpath of P1 from v11 to v1n, the path Q and the subpath
of P2 from v21 to v2m has at least m + n ≥ k + 2 vertices, a contradiction.

5. Let T be a tree, and let T1, . . . , Tk be connected subgraphs of T so that V (Ti ∩ Tj) 6= ∅ for all
i, j with 1 ≤ i < j ≤ k. Show that

k⋂
i=1

V (Ti) 6= ∅.

Solution: Proof by induction on |V (T )|. The base case |V (T )| = 1 is trivial. For the induction
step, let v be a leaf of T and let u be the unique vertex of T adjacent to v. Let T ′ = T \ v and
let T ′

i = Ti \ v for i = 1, 2, . . . , k. If V (T ′
i ∩ T ′

j) 6= ∅ for all i, j with 1 ≤ i < j ≤ k, then we can
apply the induction hypothesis to T ′ to complete the proof. Thus we may assume, without loss of
generality, that V (T ′

1) ∩ V (T ′
2) = ∅. It follows that V (T1) ∩ V (T2) = {v}. Thus either u 6∈ V (T1)

or u 6∈ V (T2). Without loss of generality, we have V (T1) = {v}. Therefore v ∈ V (Ti) for every
1 ≤ i ≤ k by the assumption and v ∈ V (T1 ∩ T2 ∩ . . . ∩ Tk), as desired.
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