
MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #2: Bipartite graphs, Matchings, Connectivity

Due Wednesday, October 19th, 2016, 14:30

1. Recall that a graph G is called d-regular if every vertex of G has degree equal
to d.

a) Construct a 3-regular graph that does not contain a perfect matching. You have
to prove that the constructed graph does not contain a perfect matching.
Hey, I bet your graph doesn’t contain a 2-factor either! A coincidence?

Solution:
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Figure 1: A 3-regular graph with no perfect matching.

Let G be the 3-regular graph depicted in Figure 1. Suppose G has a perfect
matchingM , and let e be the edge ofM incident to the vertex v. By symmetry,
we may assume e = {u, v}. Let C be any of the two connected components of
G− v that does not contain u. Every vertex from C is incident to one edge in
M and the edges of M must lie completely inside C. But that is impossible,
because |C| is odd.

b) Prove the following statement: Let G be a 3-regular graph. G contains a perfect
matching ⇐⇒ G contains a 2-factor.
. . .Ah, so no coincidences on this sheet!

Solution: First, suppose G has a perfect matching M . Then the spanning
subgraph of G that contains the edges E(G) \M is a 2-factor in G.

On the other hand, if H is a 2-factor in G, then every vertex v ∈ V (G) is
incident to exactly one edge from the set M := E(G) \ E(H). Therefore, M
is a perfect matching in G.



2. Prove that every graph G = (V,E) contains a subgraph H that is bipartite and
has at least |E|/2 edges.

Solution: Let H be a bipartite subgraph of G that has maximum number of edges,
and let A ⊆ V and B ⊆ V be the parts of the bipartition. Clearly, H contains
every edge of G that has one endpoint in A (and hence also one endpoint in B). It
is enough to show that degH(v) ≥ 1

2 degG(v) for every v ∈ V .
Suppose for contradiction there exists a vertex v ∈ V such that degH(v) < 1

2 degG(v).
Without loss of generality, v ∈ A. But then the vertex v has in G more neigh-
bors inside A than inside B. Therefore, the bipartite graph H ′ between the parts
A′ := A \ {v} and B′ := B ∪ {v} contains more edges than H, a contradiction.

3. Let G be a connected graph. We say that F ⊆ E(G) is even-degree, if every
vertex of G is incident with an even number of edges in F . Let T be an arbitrary
spanning tree of G. Prove that there exists an even-degree set FT ⊆ E(G) such
that FT ∪ E(T ) = E(G).

Solution: We claim that if F1 and F2 are both even-degree then so is F14F2 :=
(F1 − F2) ∪ (F2 − F1). Indeed, if E1 and E2 are the sets of edges in F1 and F2,
respectively, incident to the vertex v, then |E14E2| = |E1| + |E2| − 2|E1 ∩ E2|,
which is even if |E1| and |E2| are even.
For e ∈ E(G) \ E(T ), let F (e) be the edge set of the cycle formed by e and the
unique path between the endpoints of e in T . Clearly, F (e) is even-degree. Let

FT := F (e1)4F (e2) . . .4F (ek),

where E(G) \ E(T ) = {e1, e2, . . . , ek}. Then F is an even-degree set, by the claim
above, and F ∪ E(T ) = E(G), as ei ∈ F (ei) and ei 6∈ F (ej) for i, j ∈ {1, 2, . . . , k},
i 6= j.

4. Let G be a 3-regular graph. Show that the edge connectivity κe(G) is equal to
the vertex connectivity κv(G).

Solution: First observe that for an arbitrary graph G, it holds that κv(G) ≤ κe(G).
Indeed, any internally k vertex-disjoint paths between any two vertices form also k
edge-disjoint paths between the two vertices. So it is enough to show κv(G) ≥ κe(G).
Also, since the graph G is 3-regular, κe(G) ≤ 3. Therefore, if κv(G) = 3, then there
is nothing to prove. On the other hand, if κv(G) = 0, then G is disconnected and
so κe(G) = 0 as well. It remains to analyze κv(G) ∈ {1, 2}.
If κv(G) = 1, then by Menger’s theorem there exists a cut-vertex v ∈ V (G) such that
G − v is disconnected. Let C1 and C2 be any two different connected components
of G − v. Since the degree of v is only three, there must be i ∈ {1, 2} such that v
is adjacent to only one vertex w ∈ V (Ci). But then {v, w} is a cut-edge in G and
hence κe(G) ≤ 1.
Finally, consider κv(G) = 2. Again, by Menger’s theorem there exists two vertices
u and v so that G − u − v is disconnected. And again, let C1 and C2 be any two
different connected components of G − u − v. Clearly, both u and v have at least
one neighbor in C1 and at least one neighbor in C2 (as otherwise κv(G) = 1). We
now consider the following two cases:



• If {u, v} ∈ E(G), then since degG(u) = 3, it must be that u has exactly one
neighbor in C1, call it u1, and exactly one neighbor in C2, call it u2. Analo-
gously, v has exactly one neighbor in C1, say v1, and exactly one neighbor in
C2, call it v2. But then both {{u, u1}, {u, u2}} and {{v, v1}, {v, v2}} are edge
cuts in G, and hence κe(G) ≤ 2.

• If {u, v} /∈ E(G), then there exists i ∈ {1, 2} such that u has exactly one
neighbor in Ci (this time, we do not claim anything about the number of
its neighbors in C3−i). Let ui be the neighbor of u in Ci. There also exists
j ∈ {1, 2} such that v has exactly one neighbor in Cj ; we denote this neighbor
by vj . It follows that {{u, ui}, {v, vj}} is an edge cut in G of size 2.

5. Let G be an n-vertex bipartite graph such that every degree of G is between 10
and 20. Show that G contains a matching of size at least n/3.

Solution: By Kőnig’s theorem, it is enough to show that the size of any vertex
cover of G is at least n/3. Let X be a vertex cover of G. Every vertex v ∈ X is
incident to degG(v) edges, but every edge of G is incident to at least one v ∈ X,
hence

|E(G)| ≤
∑
v∈X

degG(v).

On the other hand,

2|E(G)| =
∑

v∈V (G)

degG(v) =

(∑
v∈X

degG(v)

)
+

 ∑
v∈V (G)\X

degG(v)

 .

Therefore, combining the two estimates on |E(G)| together and using the fact that
each degree is between 10 and 20 yield

20 · |X| ≥
∑
v∈X

degG(v) ≥
∑

v∈V (G)\X

degG(v) ≥ 10 · (n− |X|).

But this immediately implies |X| ≥ n/3.


