MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #2: Bipartite graphs, Matchings, Connectivity

Due Wednesday, October 19th, 2016, 14:30

1. Recall that a graph G is called d-regular if every vertex of G has degree equal
to d.

a) Construct a 3-regular graph that does not contain a perfect matching. You have
to prove that the constructed graph does not contain a perfect matching.
Hey, I bet your graph doesn’t contain a 2-factor either! A coincidence?

Solution:

Figure 1: A 3-regular graph with no perfect matching.

Let G be the 3-regular graph depicted in Figure 1. Suppose G has a perfect
matching M, and let e be the edge of M incident to the vertex v. By symmetry,
we may assume e = {u,v}. Let C be any of the two connected components of
G — v that does not contain u. Every vertex from C'is incident to one edge in
M and the edges of M must lie completely inside C. But that is impossible,
because |C] is odd.

b) Prove the following statement: Let G be a 3-regular graph. G contains a perfect
matching <= G contains a 2-factor.
... Ah, so no coincidences on this sheet!

Solution: First, suppose G has a perfect matching M. Then the spanning
subgraph of G that contains the edges E(G) \ M is a 2-factor in G.

On the other hand, if H is a 2-factor in G, then every vertex v € V(G) is
incident to exactly one edge from the set M := E(G) \ E(H). Therefore, M
is a perfect matching in G.



2. Prove that every graph G = (V, E) contains a subgraph H that is bipartite and
has at least |E|/2 edges.

Solution: Let H be a bipartite subgraph of G that has maximum number of edges,
and let A C V and B C V be the parts of the bipartition. Clearly, H contains
every edge of G that has one endpoint in A (and hence also one endpoint in B). It
is enough to show that degy (v) > 1 degq(v) for every v € V.

Suppose for contradiction there exists a vertex v € V such that degy (v) < 3 degg(v).
Without loss of generality, v € A. But then the vertex v has in G more neigh-
bors inside A than inside B. Therefore, the bipartite graph H' between the parts
A := A\ {v} and B’ := BU {v} contains more edges than H, a contradiction.

3. Let G be a connected graph. We say that FF C E(G) is even-degree, if every
vertex of GG is incident with an even number of edges in F. Let T be an arbitrary
spanning tree of G. Prove that there exists an even-degree set Fr C E(G) such
that Fr U E(T) = E(QG).

Solution: We claim that if F; and F5 are both even-degree then so is F1AF; :=
(F) — F5) U (Fy — F1). Indeed, if E; and Ey are the sets of edges in F; and Fb,
respectively, incident to the vertex v, then |F1AFEs| = |Ey| + |Eq| — 2|FE1 N By,
which is even if |Eq| and |F»| are even.

For e € E(G) \ E(T), let F(e) be the edge set of the cycle formed by e and the
unique path between the endpoints of e in T. Clearly, F(e) is even-degree. Let

FT = F(el)AF(GQ) e AF(ek),

where E(G)\ E(T) = {e1,e2,...,e,}. Then F is an even-degree set, by the claim
above, and FU E(T) = E(G), as e; € F(e;) and e; & F(e;) for i,5 € {1,2,...,k},
i

4. Let G be a 3-regular graph. Show that the edge connectivity x.(G) is equal to
the vertex connectivity k,(G).

Solution: First observe that for an arbitrary graph G, it holds that x,(G) < ke(G).
Indeed, any internally k& vertex-disjoint paths between any two vertices form also k
edge-disjoint paths between the two vertices. So it is enough to show k., (G) > k.(G).
Also, since the graph G is 3-regular, .(G) < 3. Therefore, if k,,(G) = 3, then there
is nothing to prove. On the other hand, if k,(G) = 0, then G is disconnected and
50 ke(G) = 0 as well. It remains to analyze k,(G) € {1, 2}.

If K, (G) = 1, then by Menger’s theorem there exists a cut-vertex v € V(G) such that
G — v is disconnected. Let C7 and Cs be any two different connected components
of G — v. Since the degree of v is only three, there must be ¢ € {1,2} such that v
is adjacent to only one vertex w € V(C;). But then {v, w} is a cut-edge in G and
hence k.(G) < 1.

Finally, consider k,(G) = 2. Again, by Menger’s theorem there exists two vertices
u and v so that G — u — v is disconnected. And again, let C; and C3 be any two
different connected components of G — u — v. Clearly, both v and v have at least
one neighbor in C} and at least one neighbor in Cy (as otherwise x,(G) = 1). We
now consider the following two cases:



o If {u,v} € E(G), then since deg,(u) = 3, it must be that u has exactly one
neighbor in C7, call it u;, and exactly one neighbor in Cs, call it us. Analo-
gously, v has exactly one neighbor in C4, say v, and exactly one neighbor in
Cy, call it vy. But then both {{u,u;}, {u,u2}} and {{v,v1}, {v,v2}} are edge
cuts in G, and hence k.(G) < 2.

o If {u,v} ¢ E(G), then there exists i € {1,2} such that u has exactly one
neighbor in C; (this time, we do not claim anything about the number of
its neighbors in C3_;). Let u; be the neighbor of u in C;. There also exists
J € {1,2} such that v has exactly one neighbor in C;; we denote this neighbor
by v;. It follows that {{u,w;},{v,v;}} is an edge cut in G of size 2.

5. Let G be an n-vertex bipartite graph such that every degree of G is between 10
and 20. Show that G contains a matching of size at least n/3.

Solution: By Koénig’s theorem, it is enough to show that the size of any vertex
cover of G is at least n/3. Let X be a vertex cover of G. Every vertex v € X is
incident to degq(v) edges, but every edge of G is incident to at least one v € X,

hence
|B(G)] < degg(v).

veX
On the other hand,

AB(G) = Y dega(v)<zdego(v)>+ > degg(v)
veV(G) veX veV(G)\X

Therefore, combining the two estimates on |F(G)| together and using the fact that
each degree is between 10 and 20 yield

20 X[ > degg(v) > > degg(v) =10+ (n— [X]).
veX veV(G)\X

But this immediately implies | X| > n/3.



