MATH 350: Graph Theory and Combinatorics. Fall 2017. Assignment #2: Trees

Due Thursday, September 28st, 8:30AM Write your answers clearly. Justify all your answers.

This is a warm-up question, do not submit your solution. However, if you have any trouble with solving it, get in touch with me for a hint.

An automorphism of a graph G = (V, E) is a permutation π on V such that $uw \in E \iff \pi(u)\pi(w) \in E$ for all $u, w \in V$. G is called asymmetric if $|V(G)| \ge 2$ and the only automorphism G has is the identity.

- a) Construct an asymmetric simple graph (try to find as small asymmetric graph as you can). (0 points)
- **b**) Construct an asymmetric tree (try to find as small asymmetric tree as you can). (0 points)
- c) Let G be an *n*-vertex graph and let $\mathcal{A}_G \subseteq S_n$ be the set of all automorphisms of G. Prove that \mathcal{A}_G together with the function composition operation \circ form a group, i.e., (0 points)
 - $\pi \in \mathcal{A}_G \iff \pi^{-1} \in \mathcal{A}_G$, and
 - if $\pi, \sigma \in \mathcal{A}_G$ then $\pi \circ \sigma \in \mathcal{A}_G$.

d) Prove that every loopless graph G = (V, E) with $|E| \ge 1$ contains $v \in V$ such that (0 points)

$$\operatorname{comp}(G - v) = \operatorname{comp}(G).$$

1. Prove that a graph G = (V, E) is a tree if and only if G has no cycles and |V| = |E| + 1. (3 points)

2. Let T be a tree. Recall that a leaf of T is a vertex of degree one.

a) Prove that T has exactly two leaves if and only if T is a path on at least two vertices. (1 point)

b) Prove that if T contains a vertex of degree k, then T contains at least k leaves. (1 point)

3. Let K_n^- be the graph with the vertex-set $\{1, 2, ..., n\}$ and the edge-set $\binom{[n]}{2} - \{1, 2\}$. Find a simple closed-form formula for the number of spanning trees of K_n^- , and prove it is correct. (5 points)

[*Hint:* Remember you know Cayley's formula for the number of spanning trees of $K_{n.}$]

(\star) This is a challenge of the week question, do not submit your solution.

Recall that for a tree T = (V, E) and a vertex $v \in V$, the pair (T, v) is called the rooted tree (with the root v) and denoted by T_v . Two rooted trees T_v and $T'_{v'}$ are isomorphic if there exists a bijective map $f: V(T) \to V(T')$ such that f(v) = v' and $uw \in E(T) \iff f(u)f(w) \in E(T')$ for every $u, w \in V(T)$.

a) Let \mathcal{U}'_n be the set of all *n*-vertex rooted unlabelled trees up to isomorphism. Construct a "natural" injective map from $\mathcal{U}'_n \to \{0,1\}^{2n}$. (0 points)

[Hint: map the single-vertex rooted tree to the sequence (0,1); for a rooted tree with at least 2 vertices, define its image recursively by removing the root v and considering the images of the connected components of T - v.]

b) Deduce that there are at most 4^n rooted unlabelled trees with n vertices, and hence also at most 4^n unlabelled trees with n vertices. (0 points)