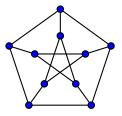
MATH 350: Graph Theory and Combinatorics. Fall 2017. Assignment #10: Proper edge-colorings of graphs

Due Thursday, November 23st, 8:30AM

Write your answers clearly. Justify all your answers.

This is a warm-up question, do not submit your solution.



- a) The Petersen graph P is the 10-vertex 3-regular graph depitted above. Prove that P has no 3-edgecoloring, and find a 4-edge-coloring of P. In other words, prove that $\chi'(P) = 4$. (0 points)
- **b)** Let G = (V, E) be a loopless multigraph. Prove that $\chi'(G) \ge \frac{|E|}{|n/2|}$. (0 points)
- c) Let G = (V, E) be a loopless multigraph and let $H \subseteq G$ be a subgraph of G with k vertices such that $k \ge 3$ and odd. Prove that

$$\chi'(G) \ge \left\lceil \frac{2|E(H)|}{k-1} \right\rceil . \tag{0 points}$$

1a) Prove that if G is a 3-regular simple graph that contains a Hamilton cycle, then $\chi'(G) = 3$. (2 points)

- **1b)** Construct a simple 3-regular graph with $\chi'(G) = 3$ that contains no Hamilton cycle. (1 point)
- **2.** For $n \ge 2$, use the following steps to determine $\chi'(K_n)$ and construct its optimal edge-coloring:
- a) For every <u>odd</u> integer $n \ge 3$, observe that K_n does not have an edge-coloring with n-1 colors. (1 point)
- b) For every <u>odd</u> integer $n \ge 3$, prove that if c is an edge-coloring of K_n with n colors, then each color class of c contains (n-1)/2 edges. (Note that $\chi'(K_n) = n$ follows from Vizing's Theorem) (1 point)
- c) For every <u>even</u> integer $n \ge 2$, use (b) to show that $\chi'(K_n) = n 1$. (1 point)
- **d)** For every integer $n \ge 2$, explicitly construct an edge-coloring of K_n with $\chi'(K_n)$ colors. (1 point) [*Hint for (d): if n is odd, put* $V(K_n) = \{0, ..., n-1\}$ and color the edge $\{i, j\}$ with $(i + j) \mod n$.]

3. Let G = (V, E) be a loopless multigraph. Recall the *line graph* of G, which we denote by L(G), is a simple graph with the vertex set being E, and $e \in E$ is adjacent to $f \in E$ in L(G) if and only if the edges e and f of G have an endpoint in common. Equivalently, L(G) = (E, F) where $F = \{\{e, f\} : e \cap f \neq \emptyset\}$.

- a) Let G = (V, E) be a loopless connected multigraph with an <u>even</u> number of edges. Prove that the line graph L(G) has a perfect matching. (2 points)
 [Hint for (a): use Tutte's Theorem.]
- b) Let G = (V, E) be a loopless connected multigraph with an <u>odd</u> number of edges. Prove that L(G) has a matching of size $\frac{|E|-1}{2}$. (1 point)

(\star) This is a challenge of the week question, do not submit your solution.

Construct an infinite sequence of 3-regular simple graphs G_n , where $n \in \mathbb{N}$, such that every G_n is 3-connected and has $\chi'(G_n) = 4$. (0 points)