Instructions: The exam is 3 hours long and contains 6 questions. The total number of points is 100 . Write your answers clearly in the notebook provided. You may quote any result/theorem seen in the lectures without proving it. Justify all your answers!

Q1 Let G be the graph depicted in Figure 1.
a) Is G planar?
(4 points)
b) Does G contain a Hamiltonian cycle?
(4 points)
c) Find $\chi(G)$.
(4 points)
d) Find $\chi^{\prime}(G)$.
(4 points)

Q2 Let $\vec{G}=(V, E)$ be the oriented graph with the two specific vertices s and t and with the capicities $c: E \rightarrow \mathbb{Z}_{+}$depicted in Figure 2.
a) Find a maximum flow from the vertex s to the vertex t. (8 points)
b) Find a minimum s, t-cut. (8 points)

Q3 Let $G=(V, E)$ be the simple graph with weights $w: E \rightarrow \mathbb{Z}_{+}$obtained from the oriented graph depicted in Figure 2 by replacing each oriented edge by a non-oriented one that has the same weight.
a) Find a minimum-cost spanning tree in G.
b) Prove that G has a unique minimum-cost spanning tree.
(8 points)

Q4 Let $G=(V, E)$ be a simple graph.
a) Prove that if G is 2-connected and $e, f \in E$ are two of its edges, then there exists a cycle in G containing both e and f.
b) Is it true that if G is such that for all $e, f \in E$ there exists a cycle in G containing both e and f, then G is 2-connected?

Q5 Let G be a simple planar graph. Without using the Four Color Theorem, Prove that if G does not contain a triangle, then $\chi(G) \leq 4$. (18 points)

Q6 How many non-isomorphic simple 2-connected graphs $G=(V, E)$ are there with $|V|=1000$ such that G has no C_{5}-minor?
(18 points)

Figure 1: The graph in the question Q1.

Figure 2: The oriented graph in the questions Q2 and Q3.

