Instructions: The exam is 3 hours long and contains 6 questions. The total number of points is 100. Write your answers clearly in the notebook provided. You may quote any result/theorem seen in the lectures without proving it. **Justify all your answers!**

Q1 Let G be the graph depicted in Figure 1.

a) Is G planar?	(4 points)
b) Does G contain a Hamilton cycle?	(4 points)
c) Find $\chi(G)$.	(4 points)
d) Find $\chi'(G)$.	$(4 \ points)$

Q2 Let $\overrightarrow{G} = (V, E)$ be the oriented graph with the two specific vertices s and t and with the capicities $c: E \to \mathbb{Z}_+$ depicted in Figure 2.

a) Find a maximum flow from the vertex s to the vertex t .	$(8 \ points)$
b) Find a minimum s, t -cut.	(8 points)

Q3 Let G = (V, E) be the simple graph with weights $w : E \to \mathbb{Z}_+$ obtained from the oriented graph depicted in Figure 2 by replacing each oriented edge by a non-oriented edge with the same weight.

a) Find a shortest path spanning tree in G for the vertex s .	$(6 \ points)$
b) Find a minimum-cost spanning tree in G .	(6 points)
c) Does G have a unique minimum-cost spanning tree?	(6 points)

Q4 Let G = (V, E) be a graph, and let $u, v, w \in V$ be distinct.

- a) Suppose G contains two internally vertex-disjoint paths from u to v and two internally vertex-disjoint paths from v to w. Prove or disprove that G has to contain two internally vertex-disjoint paths from u to w? (8 points)
- b) Suppose G contains two edge-disjoint paths from u to v, and two edge-disjoint paths from v to w. Prove or disprove that G has to contain two edge-disjoint paths from u to w? (8 points)
- **Q5** Let G = (V, E) be an *n*-vertex bipartite graph such that $3 \leq \deg_G(v) \leq k$ for every $v \in V$. Prove that G contains a matching of size at least $\frac{3n}{k+3}$. (17 points)
- **Q6** Let G be an *n*-vertex graph with $\alpha(G) = 2$. Prove that G contains $K_{\lceil \frac{n}{3} \rceil}$ as a minor. (17 points)

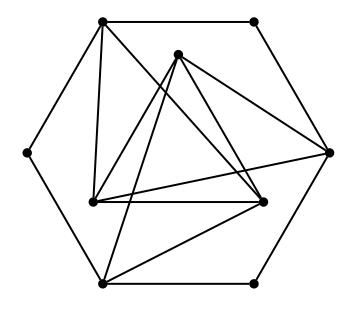


Figure 1: The graph in the question Q1.

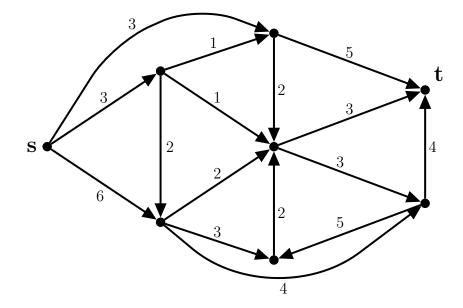


Figure 2: The oriented graph in the questions Q2 and Q3.