Road network between cities

Friendship on facebook

Ticket to Ride (board game)

Metro map of Montréal

Road network between cities

fastest route from Calgary to Québec

Friendship on facebook

everyone \leftrightarrow everyone in dist. 6

Ticket to Ride (board game)

build quickly tracks between places

Metro map of Montréal

visit all stops in shortest time

MATH 350: Graph theory and Combinatorics

Time:Tuesday and Thursday 8:35-9:55 AM©Location:Burnside Hall 1B24

Pre-requisites

- MATH 235 (Algebra 1) or MATH 240 (Discrete structures 1)
- MATH 251 (Honours Algebra 2) or MATH 223 (Linear Algebra)
- Not open to who have taken/taking MATH 343 or MATH 340

MATH 350: Graph theory and Combinatorics

Time:Tuesday and Thursday 8:35-9:55 AM©Location:Burnside Hall 1B24

Pre-requisites

- MATH 235 (Algebra 1) or MATH 240 (Discrete structures 1)
- MATH 251 (Honours Algebra 2) or MATH 223 (Linear Algebra)
- Not open to who have taken/taking MATH 343 or MATH 340

Assignments

- Ten assignments in total (one per week), each with three questions
- Each assignment: one warm-up problem & one challenge
- The assignments count for 20% of your final grade

MATH 350: Graph theory and Combinatorics

Time:Tuesday and Thursday 8:35-9:55 AMImage: Second Second

Pre-requisites

- MATH 235 (Algebra 1) or MATH 240 (Discrete structures 1)
- MATH 251 (Honours Algebra 2) or MATH 223 (Linear Algebra)
- Not open to who have taken/taking MATH 343 or MATH 340

Assignments

- Ten assignments in total (one per week), each with three questions
- Each assignment: one warm-up problem & one challenge
- The assignments count for 20% of your final grade

Midterm & Final exams

- Midterm 20% + Final 60% of your final grade
- Final 80% of your final grade (if better)
- Both exams will be open-book

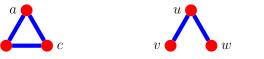
Who is going to teach this?

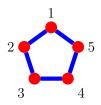
Instructor:	Jan Volec
Office:	Burnside Hall, room 1242
Office hours:	Tue, 10:30 AM - 12:30 PM and by appointment
Email:	jan [at] ucw [dot] cz
Homepage:	http://honza.ucw.cz

Who is going to teach this?

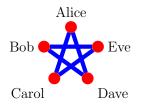
Instructor:	Jan Volec
Office:	Burnside Hall, room 1242
Office hours:	Tue, 10:30 AM - 12:30 PM and by appointment
Email:	jan [at] ucw [dot] cz
Homepage:	http://honza.ucw.cz

Originally from the Czech Republic

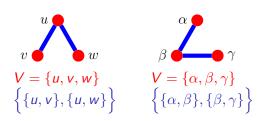


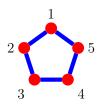

Questions?

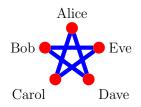
Let's start...


graph
$$G := (V, E)$$

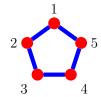
 $V - (finite)$ set of Vertices
 $E \subseteq {V \choose 2} -$ set of Edges

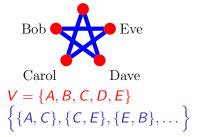

b



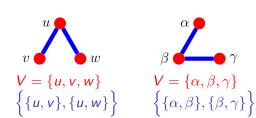

graph
$$G := (V, E)$$

$$V$$
 – (finite) set of Vertices
 $E \subseteq \binom{V}{2}$ – set of Edges


 $U = \{a, b, c\}$ $E = \{\{a, b\}, \{b, c\}, \{c, a\}\}$



 $V = \{1, 2, 3, 4, 5\} \\ \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 1\} \}$

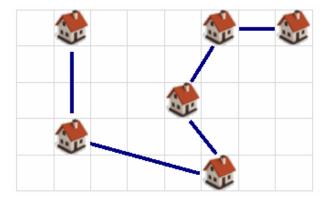


$$b \leftarrow c$$

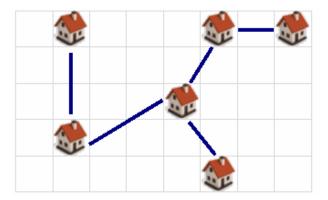
$$V = \{a, b, c\}$$

$$E = \{\{a, b\}, \{b, c\}, \{c, a\}\}$$

Alice

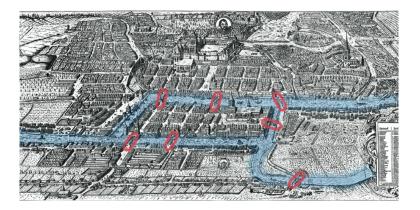

graph
$$G := (V, E)$$

$$\frac{V}{E} - \text{(finite) set of Vertices}$$
$$E \subseteq \binom{V}{2} - \text{set of Edges}$$

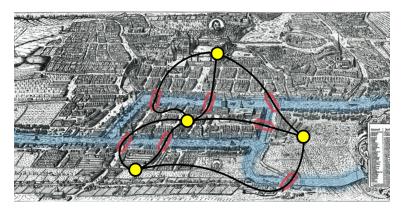

Connect houses with electric wires / optical cables

Connect houses with electric wires / optical cables

Connect houses with electric wires / optical cables

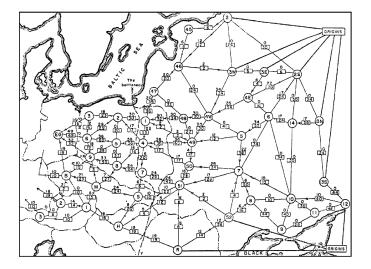

(1st algorithm by Otakar Borůvka in 1926 for electricity in Moravia)

Queen of College tours – shortest roadtrip for 647 colleges



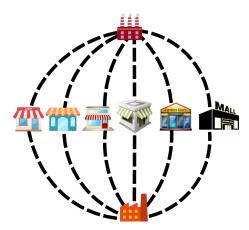
(tour found in 2015 by William Cook from University of Waterloo)

Seven bridges of Königsberg puzzle – cross each just once?

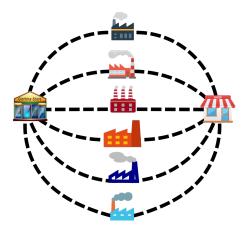


Seven bridges of Königsberg puzzle - cross each just once?

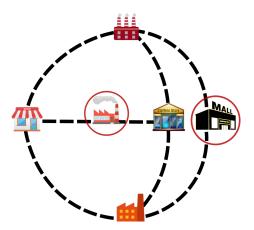
(solved by Euler in 1736)


Disconnect railway between Soviet Union and East Europe

(from 1955 secret report by Harris and Ross)


Factories vs. stores in a non-crossing city

- No factory wants share a road with another factory,
- No store wants share a road with another store,
- No politician wants to maintain a road-crossing.

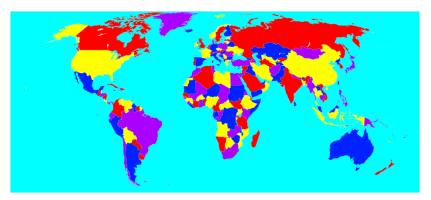

Factories vs. stores in a non-crossing city

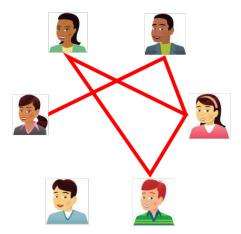
- No factory wants share a road with another factory,
- No store wants share a road with another store,
- No politician wants to maintain a road-crossing.

Factories vs. stores in a non-crossing city

- No factory wants share a road with another factory,
- No store wants share a road with another store,
- No politician wants to maintain a road-crossing.

Can there simultaneously be \geq 3 factories & \geq 3 stores in the city?





Coloring of graphs – is every political map 4-colorable?

(Appel-Haken: resolved after > 100 years, proof needs computer)

Ramsey Theory – complete disorder is impossible!

(1950's in Hungary, sociologist Sandor Szalai observed: among \sim 20 children – always 4 s.t. all friends / no friendship...)

Questions?