
MATH 350: Graph Theory and Combinatorics. Fall 2017.

Assignment #10: Proper edge-colorings of graphs

Due Thursday, November 23st, 8:30AM Write your answers clearly. Justify all your answers.

1a) Prove that if G is a 3-regular simple graph that contains a Hamilton cycle, then χ′(G) = 3. (2 points)

Solution: Let C be a Hamilton cycle in G. By the handshaking lemma every 3-regular graph must
have even number of vertices. Therefore, we can properly 2-edge-color the edges of C. Moreover, the
subgraph G−C is 1 regular, i.e., it is a perfect matching whose edges we use as the third color class.

1b) Construct a simple 3-regular graph with χ′(G) = 3 that contains no Hamilton cycle. (1 point)

Solution: See the 3-regular properly 3-edge-colored graph G depicted here.

v
e

(The drawing used and slightly modified with courtesy of Robin Guzniczak.)

Suppose G would have a Hamilton cycle C. Then, in particular, one edge incident with the top
vertex v is not be contained in C. Without loss of generality, it is the most-right (blue-colored)
edge e. That means that C is a Hamilton cycle also in the graph G− e. However, the graph G− e
is not 2-edge-connected and therefore has no Hamilton cycle; a contradiction.

2. For n ≥ 2, use the following steps to determine χ′(Kn) and construct its optimal edge-coloring:

a) For every odd integer n ≥ 3, observe that Kn does not have an edge-coloring with n−1 colors.(1 point)

Solution: Indeed, Kn is an (n−1)-regular graph, so if it has an edge-coloring with n−1 colors, then
each color class must form a perfect matching. But for n odd, Kn cannot have a perfect matching.

b) For every odd integer n ≥ 3, prove that if c is an edge-coloring of Kn with n colors, then each color
class of c contains (n− 1)/2 edges. (Note that χ′(Kn) = n follows from Vizing’s Theorem) (1 point)

Solution: Consider an edge-coloring of Kn with n colors. Each color class is a matching, and since
n is odd, any matching of Kn has size at most (n − 1)/2 edges. However, each edge of Kn has one
of the n colors and since (

n

2

)
= n · n− 1

2
,

we conclude that the bound (n− 1)/2 on the size of a color class must be tight.



c) For every even integer n ≥ 2, use (b) to show that χ′(Kn) = n− 1. (1 point)

Solution: Consider any edge-coloring of Kn−1 using n− 1 colors. From the part (b), we know that
each color class contains (n − 2)/2 edges. In other words, for each color i ∈ {1, . . . , n − 1}, there is
exactly one vertex vi that is not incident to any edge colored with i. Moreover, for different colors
i 6= j, it holds that vi 6= vj . Adding a new vertex vn and coloring the edge {vi, vn} with the color i
for all i ∈ {1, . . . , n− 1} yields an (n− 1)-edge-coloring of Kn.

d) For every integer n ≥ 2, explicitly construct an edge-coloring of Kn with χ′(Kn) colors. (1 point)

[Hint for (d): if n is odd, put V (Kn) = {0, . . . , n− 1} and color the edge {i, j} with (i+ j) mod n.]

Solution: As the hint suggested, we should show that for n being odd and V (Kn) = {0, . . . , n− 1},
coloring the edge {i, j} with (i+ j) mod n yields an edge-coloring of Kn. Suppose for a contradiction
that there are two edges e1 6= e2 incident to some vertex i that are both colored with the same color,
say x ∈ {0, . . . , n− 1}. Let e1 = {i, j} and e2 = {i, k}. Since (i+ j) ≡ x ≡ (i+ k) mod n, we have
j ≡ k mod n. However, that means that j = k contradicting e1 6= e2.

If n is even, we let n′ := n− 1 and V (Kn) = {0, . . . , n′ − 1, n′}. If i, j ∈ {0, . . . , n′ − 1}, we color the
edge {i, j} with (i+ j) mod n′, and the remaining edges {i, n′}, where i ∈ {0, . . . , n′ − 1}, we color
with (2i) mod n′. Since n′ is odd, it follows that 2i 6= 2j mod n′ for any i, j ∈ {0, . . . , n′ − 1} with
i 6= j.

3. Let G = (V,E) be a loopless multigraph. Recall the line graph of G, which we denote by L(G), is a
simple graph with the vertex set being E, and e ∈ E is adjacent to f ∈ E in L(G) if and only if the edges
e and f of G have an endpoint in common. Equivalently, L(G) = (E,F ) where F = {{e, f} : e ∩ f 6= ∅}.

a) Let G = (V,E) be a loopless connected multigraph with an even number of edges. Prove that
the line graph L(G) has a perfect matching. (2 points)

[Hint for (a): use Tutte’s Theorem.]

Solution: Suppose for contradiction L(G) does not have a perfect matching. By Tutte’s theorem,
there exists S ⊆ E such that k > |S| for k := oddL(G)(E \ S). It follows that the parity of k is
the same as the parity of |S|, hence k ≥ |S| + 2. Now look back to the graph G. The connected
components of the subgraph of L(G) induced by E \ S are in one-to-one correspondence with the
connected components of G′ := (V,E \ S). So G′ has at least k connected components. However,
each edge from S can connect at most two components of G′ and since |S| < k − 1, G cannot be
connected.

b) Let G = (V,E) be a loopless connected multigraph with an odd number of edges. Prove that L(G)

has a matching of size |E|−12 . (1 point)

Solution: Simply add an aribtrary edge to G connecting two different vertices and use the previous
part. The perfect matching M in the line graph of the new graph contains a matching M ′ ⊆ E of
size |E|−12 .

Alternatively, if G is not a tree, there is e ∈ E such that G′ := G − e is connected. On the other
hand, if G is a tree, then let v be a leaf and G′ := G − v. In both cases, G′ is connected |E(G′)| is
even, and L(G′) is a subgraph of L(G), so we use the part a).


