
MATH 350: Graph Theory and Combinatorics. Fall 2017.

Assignment #11: Planar graphs

Due Thursday, November 30st, 8:30AM Write your answers clearly. Justify all your answers.

1. Let G be a simple triangle-free planar graph. Without using the 4-Color Theorem, prove that χ(G) ≤ 4.
(2 points)

Solution: We prove the statement by induction on n := |V (G)|. If n ≤ 4, then the statement is indeed
vacuously true. In the rest, we assume n ≥ 5. By the triangle-free part of Lemma 17.4 in the lecture notes, we
know that G has at most 2n− 4 edges. Therefore, G has a vertex v of degree at most 3, as otherwise

4n− 8 ≥ 2|E(G)| =
∑

v∈V (G)

deg(v) ≥ 4n ;

a contradiction. So by using the induction hypothesis on the subgraph G′ := G− v (which is clearly triangle-
free), we obtain a proper 4-coloring c′ of G′, which we simply extend to G by coloring the vertex v with one of
the colors not used on its neighbors in c′. (Alternatively, we could have used the above reasoning to prove that
G is 3-degenerate.)

2. A simple graph G is called outerplanar if it can be drawn in the plane without any crossing in such a way
that every vertex is incident with the infinite region.

Let G = (V,E) be a connected outerplanar graph with |V | ≥ 3.

a) Prove that G contains two vertices of degree at most 2. (1 point)

Solution: If G has 3 vertices, then every vertex has the degree at most 2. For an outerplanar G on at
least 4 vertices, we prove the following stronger lemma:

Lemma. If |V (G)| ≥ 4, then G contains at least two non-adjacent vertices of degree at most 2.

We proceed by induction on n. If the number of vertices is equal to 4, then the only way how G could
avoid having a pair of non-adjacent vertices of degree at most 2 is when G = K4. However, K4 cannot
be outerplanar: take its arbitrary outerplanar drawing, place a new vertex w in the infinite region, and
connect w with all the vertices of K4. This yields a plane drawing of K5; a contradiction.

Now suppose |V | ≥ 5. If G is disconnected, then G has at least two connected components and each
component of G contains at least one vertex of degree at most 2 (if the number of the vertices in the
component is at most 3, then the statement follows trivially, otherwise we use the induction hypothesis).
If G contains a cut-vertex v, then let C1 be one of the connected components of G− v, V1 := V (C1)∪{v}
and V2 := V \ V (C1). Let G1 and G2 be the subgraph of G induced by V1 and V2, respectively. We claim
that both G1 and G2 contains a vertex v1 6= v and v2 6= v, respectively, of degree at most 2 (clearly, vi
has the same degree in Gi and G for i ∈ {1, 2}). Indeed, for both i = 1 and i = 2, if |Vi| ≤ 3, then every
vertex of Gi has degree at most 2, so just select an arbitrary vi ∈ Vi \ {v}. On the other hand, if |Vi| ≥ 4,
then by the induction hypothesis Gi contains two vertices of degree at most 2, so let vi be one of the
vertices that is not v.

It remains to analyze the case that G is 2-connected. Firstly, we observe that any 2-connected outerplanar
graphs contains a Hamiltonian cycle. Indeed, take any of outerplanar drawing of G, and let C be a longest
cycle in G. If V (C) = V (G), then we are done. Otherwise let x ∈ V (G) \ V (C) and let P1 and P2 be two
paths from x to v1, v2 ∈ V (C), respectively, such that V (P1) ∩ V (P2) = {x}. Note that these two paths
are guaranteed to exist by the 2-connectivity of G. But then either v1 and v2 are consecutive on C, which
means G contains a cycle longer than G, or, take any two vertices x, y ∈ V (C) such that the cyclic order
of vertices on C is v1, . . . , y, . . . , v2, . . . , z, . . . , v1. It follows that v1, v2, x, y, z is a subdivision of K2,3, and



hence any outerplanar drawing of G[C ∪ {x}] extended by placing a new vertex w in the infinite region
and connecting it to x, y, z yields a planar drawing of a subdivision of K3,3; a contradiction.

Now, let C be a Hamilton cycle in G. If E(G) = E(C), then G is 2-regular and since |V | ≥ 5, we can
select any two non-adjacent vertices of G. Otherwise, let u and w be two adjacent vertices in G such that
{u,w} /∈ E(C). Observe that in any outerplanar drawing of G, all the additional edges must be drawn
“inside” C. Therefore, G − {u,w} is disconnected, and let C1 be one of the corresponding connected
components. Analogously to the previous case, we set V1 := V (C1) ∪ {u,w} and V2 := V \ V (C1), and
let G1 := G[V1] and G2 := G[V2]. Now we claim for both i = 1 and i = 2, Gi contains a vertex vi of
degree at most 2 that is neither u nor w. Indeed, if |Vi| = 3, then choose the third vertex in Vi to be vi.
If |Vi| ≥ 4, then Gi contains at least two non-adjacent vertices x, y with degrees at most 2. Since u and
w are adjacent, it follows that {x, y} 6= {u,w}. Choose vi ∈ {x, y} \ {u,w} arbitrarily; in all the cases, v1
and v2 are non-adjacent and have degrees at most 2.

b) Without using the 4-Color Theorem, prove that χ(G) ≤ 3. (1 points)

Solution. The part (a) yields that G is 2-degenerate so indeed, χ(G) ≤ 3.

c) Prove that a graph is outerplanar if and only if it contains no K4-minor and no K2,3-minor. (2 points)

Solution. Consider the graph G+ which is obtained from G by adding a new vertex v and connecting
v to all the vertices of G. First of all, if G is outerplanar, we claim that G+ is planar. Indeed, consider
an outerplanar drawing of G in the plane, draw v in the infinite region, and simply connect v to all
the vertices of G so that the edges do not cross. We have found a plane drawing of G+ so it is planar.
However, if G would contain either a minor of K4 or a minor K2,3, we can easily find a minor of K5 or
K3,3 in G+, contradicting Kuratowski’s theorem.

Now we essentially flip this argument in order to show the other implication. If G does not contain a
minor of K4 or K2,3, then G+ contains neither a minor of K5 nor K3,3. So by Kuratowski’s theorem, G+

is planar. If a drawing of G+ is such that v is not on the boundary of the infinite region, then consider
any region R with v on its boundary and apply so-called circle inversion to obtain a new drawing of G+

in the plane so that everything that was drawn outside of R is now inside. In this way, we obtained a
drawing D of G+ with v on the boundary of the infinite region, and it immediately follows that if delete
v and all of the edges incident to v from D, we obtain an outerplanar drawing of G. So in particular, G
is outerplanar.

3a) Let H be a simple graph with maximum degree at most 3. Show that every simple graph contains a
subdivision of H if and only if it contains H as a minor. (2 points)

3b) Let G be a simple graph that contains K5 as a minor. Prove that G contains a subdivision of K5 or a
subdivision of K3,3. (2 points)

Solution: Before proving the parts 3a and 3b, it will be useful to have the following lemma

Lemma. Let H = (W,F ) with W = {w1, w2, . . . , wk} be contained in G = (V,E) as a minor. Then there exists
vertex-disjoint sets W1,W2, . . . ,Wk ⊆ V such that:

1. The induced subgraph G[Vi] is connected, and

2. if {wi, wj} ∈ F , then there exist vi ∈Wi and vj ∈Wj such that eij = {vi, vj} ∈ E.

Proof. Without loss of generality, we may assumeH was obtained fromG only by a sequence of contracting edges
as otherwise we would find the desired vertices and edges in the appropriate subgraph of G. Let e1, e2, . . . , e` be
the sequence of edge-contractions such that H0 := G, Hi is obtained from Hi−1 by contracting ei ∈ E(Hi−1) for
all i ∈ {1, 2, . . . , `}, and H` = H. We prove the lemma by induction on `. Clearly, if ` = 0, then H = G and the
lemma trivially holds. Otherwise let e1 = {u,w} ∈ E(G) and recall H1 was obtained from G by contracting e1.



Applying the induction hypothesis on the graph H1, we get k disjoint sets W ′1,W
′
2, . . . ,W

′
k ⊆ V (H1) with the

desired property. Let x ∈ V (H1) be the vertex created from contracting {u,w}. If x /∈
⋃
W ′i , then the W ′i ,

for i ∈ {1, 2, . . . , k} are the sought sets also for G. Assume, without loss of generality, x ∈ W ′1. But then let
W1 := (W ′1 \ {x}) ∪ {u,w} and Wi := W ′i for all i ≥ 2. It is straightforward to check the sets Wi have all the
desired properties.

Armed with this lemma, we proceed firstly with proving the part 3a. Fro any H, If G contains a subdivision
of H, then it clearly contains H as a minor, so we move to the other implication (where we will of course use
the maximum-degree bound). Let H = (W,F ) with W = {w1, w2, . . . , wk} be contained in G as a minor, and
let W1,W2, . . . ,Wk be the disjoint sets of vertices of G from the lemma, and eij ∈ E(G), for all i, j such that
{wi, wj} ∈ E(H), the edges from the lemma. For each set Wi, we find a vertex zi ∈ Wi, and for each edge
{wi, wj} ∈ E(H), we find a path Pij in G connecting zi to zj that is internally vertex-disjoint from the paths
Pi′j′ for i′j′ 6= ij. This forms a subdivision of H. We remark that each path Pij will be actually consisting of

three pieces: a path P j
i ⊆Wi, which connects zi to the unique vertex in eij ∩Wi, the edge eij itself, and a path

P i
j ⊆Wj connecting eij ∩Wj to zj .

For any i ∈ {1, 2, . . . , k} we have that wi has degree at most 3, hence there are at most 3 edges in G from the
second part of the outcome of the lemma that have one of the endpoints in Wi. If there is only one such edge,
say eij , i.e., wi has degree 1, then simply take the endpoint of eij inside Wi to be zi, and P j

i := ∅. If the degree
of wi in H is 2, then let wj and wk be its neighbors in H, xj , xk ∈ Wi the endpoints in Wi of the edges eij
and eik, respectively, given by the lemma. Note that it can be xj = xk. We set zi := xj , P

j
i := ∅, and P k

i to
be a shortest path inside Wi from xj to xk. Finally, if wi has degree 3 in H, then let wj , wk, and w` be its
neighbors, and xj , xk, x` ∈Wi the endpoints of the edges from the lemma. Let Q be a shortest path inside Wi

that connects xj and xk, Q′ a shortest path from x` to a vertex of V (Q), and let zi be the unique vertex that is

both in Q and Q′. We define P j
i and P k

i to be the subpaths of Q from zi to xj and xk, respectively, and finally
P `
i := Q′. It readily follows that we just found a subdivision of H.

The part 3b could be either deduced from the combination of the part 3a, Kuratowski’s and Kuratowski-
Wagner’s theorems, or, if we want an independent proof (which is needed if our aim is actually to prove the
equivalence of the two theorems), we proceed as follows: Apply the lemma for G and H := K5 to get 5 vertex-
disjoint sets W1,W2, . . . ,W5 ⊆ V (G) that are connected, and the edges eij ∈ E(G) for 1 ≤ i < j ≤ 5 between

them as described in the statement of the lemma. Fix i ∈ {1, 2, 3, 4, 5} arbitrarily, and let xji , for 1 ≤ j ≤ 5 and
j 6= i, be the vertices that are the endpoints of the edges eij inside Wi. Suppose first that for each i, the induced

subgraph G[Wi] contains a vertex zi and four internally vertex-disjoint paths P j
i to all the four vertices xji . In

this case, we can combine these paths together with the edges eij to get a subdivision of K5 in the same way
as we did for H in the part 3a.
For the rest of the proof, suppose there is i ∈ {1, 2, 3, 4, 5} such that Wi has no such a vertex zi. Without loss of
generality, i = 1. Let x2, x3, x4, x5 ∈W1 be the four vertices incident to the edges e12, e13, e14, e15, respectively.
Now, let Q be a shortest path in G[W1] from x2 to x3, and Q′ a shortest path from x4 to some vertex of Q. Let
za be the unique vertex of V (Q)∩V (Q′), and P 2, P 3, P 4 be the unique paths from za to x2, x3, x4, respectively,
that lie inside V (Q)∪V (Q′). Now let Q′′ be a shortest path from x5 some vertex in V (Q)∪V (Q′), and let zb be
the endpoint of Q′′ different from x5. It follows that za 6= zb as otherwise we have just found a vertex z1 with
the property of having four vertex-disjoint paths to all x2, . . . , x5. Without loss of generality, zb lies somewhere
on P 4. Let R be the subpath of P 4 between za and zb, and f ∈ E(G) an arbitrary edge on R, for example the
edge from za. Let’s consider an arbitrary spanning tree T1 of W1 that contains the edge f , and spanning trees

T2, T3, T4, T5 of W2,W3,W4,W5, respectively, and let H be a minor of G obtained by contracting
5⋃

i=1

E(Ti) \ f .

Note that H is a 6 vertex graph, and we denote V (H) = {za, zb, w2, w3, w4, w5}. It follows that the vertices
w2, w3, w4, w5 induces K4 in H, {zb, w2, w3} ⊆ N(za), and {za, w4, w5} ⊆ N(zb). Clearly, H contains a K3,3

subgraph with parts A = {za, w4, w5} and B = {zb, w2, w3}, and hence G contains K3,3 as a minor. Therefore,
by the part 3a, G also contains K3,3 as a subdivision, which is what we needed to prove.


