MATH 350: Graph Theory and Combinatorics. Fall 2017.
Assignment #11: Planar graphs

Due Thursday, November 30st, 8:30AM Write your answers clearly. Justify all your answers.

1. Let G be a simple triangle-free planar graph. Without using the 4-Color Theorem, prove that x(G) < 4.
(2 points)

Solution: We prove the statement by induction on n := |V(G)|. If n < 4, then the statement is indeed
vacuously true. In the rest, we assume n > 5. By the triangle-free part of Lemma 17.4 in the lecture notes, we
know that G has at most 2n — 4 edges. Therefore, G has a vertex v of degree at most 3, as otherwise

in—8>2|E(G)| = ) deg(v) >4n;
veV(Q)

a contradiction. So by using the induction hypothesis on the subgraph G’ := G — v (which is clearly triangle-
free), we obtain a proper 4-coloring ¢’ of G’, which we simply extend to G by coloring the vertex v with one of
the colors not used on its neighbors in ¢. (Alternatively, we could have used the above reasoning to prove that
G is 3-degenerate.)

2. A simple graph G is called outerplanar if it can be drawn in the plane without any crossing in such a way
that every vertex is incident with the infinite region.

Let G = (V, E) be a connected outerplanar graph with |V| > 3.
a) Prove that G contains two vertices of degree at most 2. (1 point)

Solution: If G has 3 vertices, then every vertex has the degree at most 2. For an outerplanar G on at
least 4 vertices, we prove the following stronger lemma;

Lemma. If |V(G)| > 4, then G contains at least two non-adjacent vertices of degree at most 2.

We proceed by induction on n. If the number of vertices is equal to 4, then the only way how G could
avoid having a pair of non-adjacent vertices of degree at most 2 is when G = Ky4. However, K, cannot
be outerplanar: take its arbitrary outerplanar drawing, place a new vertex w in the infinite region, and
connect w with all the vertices of K. This yields a plane drawing of K3; a contradiction.

Now suppose |V| > 5. If G is disconnected, then G has at least two connected components and each
component of G contains at least one vertex of degree at most 2 (if the number of the vertices in the
component is at most 3, then the statement follows trivially, otherwise we use the induction hypothesis).
If G contains a cut-vertex v, then let C; be one of the connected components of G —v, Vi := V(Ci) U {v}
and Vo := V' \ V(C1). Let G1 and G4 be the subgraph of G induced by V; and Vs, respectively. We claim
that both G and G contains a vertex v; # v and ve # v, respectively, of degree at most 2 (clearly, v;
has the same degree in G; and G for i € {1,2}). Indeed, for both i = 1 and i = 2, if |V;| < 3, then every
vertex of G; has degree at most 2, so just select an arbitrary v; € V; \ {v}. On the other hand, if |V;| > 4,
then by the induction hypothesis G; contains two vertices of degree at most 2, so let v; be one of the
vertices that is not v.

It remains to analyze the case that G is 2-connected. Firstly, we observe that any 2-connected outerplanar
graphs contains a Hamiltonian cycle. Indeed, take any of outerplanar drawing of GG, and let C' be a longest
cycle in G. If V(C) = V(G), then we are done. Otherwise let z € V(G) \ V(C) and let P; and P, be two
paths from = to v1, vy € V(C), respectively, such that V(P;) N V(P2) = {z}. Note that these two paths
are guaranteed to exist by the 2-connectivity of G. But then either vy and vy are consecutive on C, which
means G contains a cycle longer than G, or, take any two vertices z,y € V(C') such that the cyclic order
of verticeson C'is vy, ...,y,...,v2,...,%,...,v1. It follows that vy, v, z,y, z is a subdivision of K 3, and



hence any outerplanar drawing of G[C' U {x}] extended by placing a new vertex w in the infinite region
and connecting it to x,y, z yields a planar drawing of a subdivision of K3 3; a contradiction.

Now, let C' be a Hamilton cycle in G. If E(G) = E(C), then G is 2-regular and since |V| > 5, we can
select any two non-adjacent vertices of G. Otherwise, let u and w be two adjacent vertices in G such that
{u,w} ¢ E(C). Observe that in any outerplanar drawing of G, all the additional edges must be drawn
“inside” C. Therefore, G — {u,w} is disconnected, and let C; be one of the corresponding connected
components. Analogously to the previous case, we set V; := V(C1) U {u,w} and Vo := V \ V(C}), and
let Gy := G[V1] and G35 := G[V,]. Now we claim for both i« = 1 and ¢ = 2, G; contains a vertex v; of
degree at most 2 that is neither u nor w. Indeed, if |V;| = 3, then choose the third vertex in V; to be v;.
If |V;| > 4, then G; contains at least two non-adjacent vertices x,y with degrees at most 2. Since u and
w are adjacent, it follows that {x,y} # {u,w}. Choose v; € {z,y} \ {u, w} arbitrarily; in all the cases, v;
and vy are non-adjacent and have degrees at most 2.

b) Without using the 4-Color Theorem, prove that x(G) < 3. (1 points)
Solution. The part (a) yields that G is 2-degenerate so indeed, x(G) < 3.
c) Prove that a graph is outerplanar if and only if it contains no K4-minor and no K3 3-minor. (2 points)

Solution. Consider the graph G which is obtained from G by adding a new vertex v and connecting
v to all the vertices of G. First of all, if G is outerplanar, we claim that G is planar. Indeed, consider
an outerplanar drawing of G in the plane, draw v in the infinite region, and simply connect v to all
the vertices of G so that the edges do not cross. We have found a plane drawing of G so it is planar.
However, if G would contain either a minor of K4 or a minor K>3, we can easily find a minor of K5 or
K33 in G, contradicting Kuratowski’s theorem.

Now we essentially flip this argument in order to show the other implication. If G does not contain a
minor of K4 or K3, then G™ contains neither a minor of K5 nor K3 3. So by Kuratowski’s theorem, Gt
is planar. If a drawing of G is such that v is not on the boundary of the infinite region, then consider
any region R with v on its boundary and apply so-called circle inversion to obtain a new drawing of G
in the plane so that everything that was drawn outside of R is now inside. In this way, we obtained a
drawing D of G* with v on the boundary of the infinite region, and it immediately follows that if delete
v and all of the edges incident to v from D, we obtain an outerplanar drawing of G. So in particular, G
is outerplanar.

3a) Let H be a simple graph with maximum degree at most 3. Show that every simple graph contains a
subdivision of H if and only if it contains H as a minor. (2 points)

3b) Let G be a simple graph that contains K5 as a minor. Prove that G contains a subdivision of K35 or a
subdivision of K3 3. (2 points)

Solution: Before proving the parts 3a and 3b, it will be useful to have the following lemma

Lemma. Let H = (W, F) with W = {wy,wa, ..., wi} be contained in G = (V, E) as a minor. Then there exists
vertezr-disjoint sets Wi, Wa, ..., Wi CV such that:

1. The induced subgraph G[V;] is connected, and
2. if {w;,w;} € F, then there exist v; € W; and v; € W; such that e;; = {v;,v;} € E.

Proof. Without loss of generality, we may assume H was obtained from G only by a sequence of contracting edges
as otherwise we would find the desired vertices and edges in the appropriate subgraph of G. Let ey, e2, ..., ey be
the sequence of edge-contractions such that Hy := G, H; is obtained from H;_q by contracting e; € E(H;_1) for
alli € {1,2,...,¢}, and Hy = H. We prove the lemma by induction on ¢. Clearly, if £ = 0, then H = G and the
lemma trivially holds. Otherwise let e; = {u,w} € E(G) and recall H; was obtained from G by contracting e;.



Applying the induction hypothesis on the graph Hy, we get k disjoint sets Wi, W,, ..., W, C V(H;) with the
desired property. Let x € V(H;) be the vertex created from contracting {u,w}. If ¢ (JW/, then the W/,
for i € {1,2,...,k} are the sought sets also for G. Assume, without loss of generality, € W{. But then let
Wi = (W] \{z}) U{u,w} and W; := W/ for all i > 2. It is straightforward to check the sets W; have all the

desired properties. ]

Armed with this lemma, we proceed firstly with proving the part 3a. Fro any H, If G contains a subdivision
of H, then it clearly contains H as a minor, so we move to the other implication (where we will of course use
the maximum-degree bound). Let H = (W, F) with W = {w1, wa,...,w;} be contained in G as a minor, and
let Wi, Wy, ..., Wy be the disjoint sets of vertices of G from the lemma, and e;; € E(G), for all ¢, j such that
{w;,w;j} € E(H), the edges from the lemma. For each set W;, we find a vertex z; € Wj;, and for each edge
{w;,w;} € E(H), we find a path P;; in G connecting z; to z; that is internally vertex-disjoint from the paths
Py for i'j" # ij. This forms a subdivision of H. We remark that each path P;; will be actually consisting of
three pieces: a path Pz-j C W;, which connects z; to the unique vertex in e;; N Wj, the edge e;; itself, and a path
Pj C W; connecting e;; N W; to z;.

For any i € {1,2,...,k} we have that w; has degree at most 3, hence there are at most 3 edges in G from the
second part of the outcome of the lemma that have one of the endpoints in Wj. If there is only one such edge,
say e;j, i.e., w; has degree 1, then simply take the endpoint of e;; inside W; to be z;, and Pij := (. If the degree
of w; in H is 2, then let w; and wy, be its neighbors in H, x;,x; € W; the endpoints in W; of the edges e;;
and e;i, respectively, given by the lemma. Note that it can be z; = ;. We set z; := z;, Pl-j = (), and sz to
be a shortest path inside W; from z; to x. Finally, if w; has degree 3 in H, then let w;, wy, and wy be its
neighbors, and x;, zy, 2y € W; the endpoints of the edges from the lemma. Let @) be a shortest path inside W;
that connects z; and xj, Q" a shortest path from zy to a vertex of V(Q), and let z; be the unique vertex that is
both in Q and @Q'. We define P’ and sz to be the subpaths of ) from z; to x; and xy, respectively, and finally
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Pf :=Q'. Tt readily follows that we just found a subdivision of H.

The part 3b could be either deduced from the combination of the part 3a, Kuratowski’s and Kuratowski-
Wagner’s theorems, or, if we want an independent proof (which is needed if our aim is actually to prove the
equivalence of the two theorems), we proceed as follows: Apply the lemma for G and H := K} to get 5 vertex-
disjoint sets Wy, W, ..., W5 C V(G) that are connected, and the edges e;; € E(G) for 1 <i < j < 5 between
them as described in the statement of the lemma. Fix i € {1,2,3,4,5} arbitrarily, and let xf ,for 1 <j<5and
J # 1, be the vertices that are the endpoints of the edges e;; inside W;. Suppose first that for each 4, the induced
subgraph G[W;] contains a vertex z; and four internally vertex-disjoint paths Pl-j to all the four vertices :c{ In
this case, we can combine these paths together with the edges e;; to get a subdivision of K5 in the same way
as we did for H in the part 3a.

For the rest of the proof, suppose there is ¢ € {1,2,3,4,5} such that W; has no such a vertex z;. Without loss of
generality, i = 1. Let 22,23, 2%, 25 € W be the four vertices incident to the edges e12, 13, €14, €15, respectively.
Now, let @ be a shortest path in G[W1] from z? to 23, and @’ a shortest path from 2* to some vertex of Q. Let
24 be the unique vertex of V(Q)NV(Q'), and P?, P3, P* be the unique paths from z, to 2, r3, 24, respectively,
that lie inside V(Q)UV(Q'). Now let Q" be a shortest path from z° some vertex in V(Q) UV (Q’), and let z;, be
the endpoint of Q" different from x°. It follows that z, # 2, as otherwise we have just found a vertex z; with
the property of having four vertex-disjoint paths to all 2, ..., 2% Without loss of generality, 2, lies somewhere
on P*. Let R be the subpath of P* between z, and z,, and f € E(G) an arbitrary edge on R, for example the
edge from z,. Let’s consider an arbitrary spanning tree T of W; that contains the edge f, and spanning trees
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Ty, T3, Ty, Ts of Wy, W3, Wy, Wi, respectively, and let H be a minor of G obtained by contracting U E(T)\ f.
i=1

Note that H is a 6 vertex graph, and we denote V(H) = {24, 2, w2, w3, wg, ws}. It follows that the vertices

wa, w3, wy, ws induces Ky in H, {zp, w2, w3} C N(zq), and {z,, ws,ws} C N(z). Clearly, H contains a K33

subgraph with parts A = {zg, w4, ws} and B = {zj, w2, w3}, and hence G contains K33 as a minor. Therefore,

by the part 3a, G also contains K33 as a subdivision, which is what we needed to prove.



