MATH 350: Graph Theory and Combinatorics. Fall 2016. Assignment $\#\emptyset$: Just a bunch of problems and exercises

- Let G = (V, E) be a simple graph and let $\delta(G) := \min_{v \in V} \deg_G(v)$.
- a) G contains a path of length δ .
- **b)** If $\delta(G) \geq 2$, then G contains a cycle of length at least $\delta + 1$.
- *) If G is connected and has |V| = n vertices, then G contains a path of length $\min\{2\delta, n-1\}$.

Recall that a complement of a simple graph G = (V, E) is the graph $\overline{G} = (V, {V \choose 2} \setminus E)$. A simple graph G is called *self-complementary* if G is isomorphic to its complement \overline{G} .

- a) Find a self-complementary graph G on at least two vertices.
- b) Show that if G is an n-vertex self-complementary graph, then n = 4k or n = 4k + 1 for some integer $k \ge 0$.
- *) Construct a self-complementary graph on n vertices for infinitely many values of n.

Let $k \geq 2$ be an integer.

- a) Show that if G = (V, E) is a k-connected simple graph, then for any k-vertex subset $U \subseteq V$ there exists a cycle C in G such that $U \subseteq V(C)$.
- **b)** Construct a k-connected simple graph G = (V, E) that contains a (k+1)-vertex subset $U \subseteq V$ such that no cycle C in G satisfies $U \subseteq V(C)$.
- c) Show that if G = (V, E) is a k-connected simple graph, then for any (k + 1)-vertex subset $U \subseteq V$ there exists a path P in G such that $U \subseteq V(P)$.
- d) Construct a k-connected simple graph G = (V, E) that contains a (k+2)-vertex subset $U \subseteq V$ such that no path P in G satisfies $U \subseteq V(P)$.

Let G = (V, E) be a simple graph. Recall an edge $e \in E$ is called *a cut-edge* if the number of connected components of the graph G - e is strictly larger than the number of connected components of G. Also recall that a graph G is called *k*-regular if every vertex has degree exactly k.

Prove that if G is a 2k-regular graph, then G contains no cut-edge.

Let G = (V, E) be a multigraph without loops such that $\ell > 0$ vertices have an odd degree.

- a) Recall that ℓ must be even.
- b) Show that if G is connected, then there exists tours T_1, \ldots, T_ℓ in G such that every edge $e \in E$ is contained in exactly one of the tours.

A Hamiltonian path in a graph G = (V, E) is a path in G that contains all the vertices, i.e., a path of length |V| - 1. Let G = (V, E) be a simple graph and let $\delta(G) := \min_{v \in V} \deg_G(v)$.

- a) If $\delta(G) \ge n/2$, then G contains a Hamiltonian cycle.
- **b)** If $\delta(G) \ge (n-1)/2$, then G contains a Hamiltonian path.
- *) If $\delta(G) \ge n/2 + 1$ and $u, w \in V$ are any two vertices of G, then G contains a path from u to w of length |V| 1, i.e., a Hamiltonian path with the endpoints u and w.

Let G = (V, E) be a simple bipartite graph with parts A and B such that |A| = |B| = n.

- a) If the minimum degree $\delta(G) \ge n/2$, then G contains a perfect matching.
- b) Show that the minimum degree condition cannot be improved, i.e., construct a bipartite graph G with parts A and B such that |A| = |B| = n so that $\delta(G) = \lfloor \frac{n-1}{2} \rfloor$ and G has no perfect matching.

Show that any red/blue coloring of the edges of a complete graph on n vertices contains a monochromatic tree on n vertices.

For an integer n, let K_n^L be the complete graphs on n vertices with an additional loop on each vertex, i.e., $K_n^L = (V, E)$ is a multigraph with loops such that |V| = nand $E = {V \choose 2} \cup V$. Decide whether the following Ramsey-type statement is true or false: for any integer k there exists an integer n such that any red/blue coloring of $E(K_n^L)$ contains a monochromatic copy of K_k^L .

For given integers k, ℓ and m, recall that $R(k, \ell, m)$ is the smallest integer N such that any red/blue/green coloring of $E(K_N)$ contains at least one of the following subgraphs: a red copy of K_k , a blue copy of K_ℓ , or a green copy of K_m . Prove that

$$R(k,\ell,m) \le \frac{(k+\ell+m-3)!}{(k-1)!(\ell-1)!(m-1)!}$$

An $n \times n$ Latin square is a table with n rows and n columns, where each cell contains one number between 1 and n in such a way that in each row every number appears exactly once, and also in every column each number appears exactly once (similarly as in Sudoku). See examples of a 3×3 and a 4×4 Latin squares.

			_		2	3	
1	2	3		3	1	4	
2	3	1		2	4	1	ſ
3	1	2		4	3	2	Γ

Analogously, for $m \leq n$, an $m \times n$ Latin rectangle is a table with m rows and n columns where each cell contains one number between 1 and n in such a way that in each row every number appears exactly once, and in every column each number appears at most once.

Prove that for any $m \times n$ Latin rectangle there exists an $n \times n$ Latin square so that the first m lines of the Latin square are equal to the lines of the rectangle.

Recall that Ford-Fulkerson Theorem states that in every network the value of a maximum $s \to t$ -flow is equal to the capacity of a minimum s, t-cut. Use this to establish an alternative (and short) proof of Hall's Theorem.

Let G = (V, E) be a simple graph such that all the vertices except a one have degree at most 3, i.e., there is a vertex $x \in V$ so that $\deg_G(u) \leq 3$ for all $u \in V \setminus \{x\}$. Show that G is 4-colorable.

Let G = (V, E) be a simple graph. Show that there exists an ordering of V such that the greedy coloring algorithm will find a coloring of G with $\chi(G)$ colors.

Recall an *orientation* of a simple graph G = (V, E) is a function $o : E \to V$ that each $e \in E$ assigns one of its endpoints, which is then called the *head* of *e*. The other endpoint of *e* is called the *tail* of *e*. A triple (V, E, o), where (V, E) is a simple graph and *o* an orientation of *E* is called an *oriented graph*. An *oriented path* / *oriented cycle* in an oriented graph is a path / cycle where each edge is traversed from its tail to its head. An orientation of a simple graph *G* is called *acyclic* if the resulting oriented graph contains no oriented cycle.

Show that every simple graph G has an acyclic orientation.

Prove that a simple graph G = (V, E) is k-colorable if and only if there exists an acyclic orientation o of its edges so that (V, E, o) contains no oriented path of length k.

Let G = (V, E) be a simple graph with $\chi(G) = k$. Show that $|E| \ge {k \choose 2}$.

Let G = (V, E) be a simple graph with $\chi(G) = k$. Show that G contains a subgraph H such that $\chi(H) = k$ and for every vertex $v \in V(H)$ we have $\deg_H(v) \ge k - 1$.

Let G = (V, E) be a simple graph on *n* vertices. Suppose $V = \{v_1, \ldots, v_n\}$ and consider the following graph G' on 2|V| + 1 vertices $v'_1, v'_2, \ldots, v'_{2n}, z$:

- On the first |V| vertices, put a copy of G,
- For any $i \in \{n+1, n+2, \ldots, 2n\}$ and $j \in \{1, 2, \ldots, n\}$, connect v'_i to v'_j if and only if v_{i-n} is adjacent to v_j in G,
- the vertices $\{v'_{n+1}, v'_{n+2}, \dots, v'_{2n}\}$ form an independent set in G', and
- the vertex z is adjacent to all $v'_{n+1}, v'_{n+2}, \ldots, v'_{2n}$.

For example, if G is an edge, then G' is a 5-cycle.

- a) Prove that if G is triangle-free, then G' is triangle-free as well.
- **b)** Show that $\chi(G') = \chi(G) + 1$.

Let G = (V, E) be a loopless multigraph and let $H \subseteq G$ be a subgraph of G with k vertices such that k is odd and $k \geq 3$. Show that

$$\chi'(G) \ge \left\lceil \frac{2|E(H)|}{k-1} \right\rceil.$$

Let G = (V, E) be a loopless multigraph with maximum degree $\Delta(G) = \Delta$. In the lecture, we have shown that $\chi'(G) \leq 3\lceil \frac{\Delta}{2} \rceil$. Now, prove that

$$\chi'(G) \leq \left\lfloor \frac{3\Delta}{2} \right\rfloor$$
 (which is the same for Δ even, but better for Δ odd).

(*Hint:* distinguish the cases $\mu(G) \leq \Delta/2$ and $\mu(G) > \Delta/2$. In the first case, use Vizing's theorem; otherwise do something and then use the bound from the lecture.)

- a) Construct a 5-regular simple graph that is planar.
- **b)** What is the minimum number k of vertices of such a graph?
- c) If your graph in (a) had more vertices than k, construct another 5-regular planar graph that has exactly k vertices.

Find a planar graph that is isomorphic to its dual.

Let H be a simple graph with maximum degree at most 3. Show that a simple graph G contains a subdivision of H if and olny if G contains H as a minor.

Let G be a simple graph that contains K_5 as a minor. Prove that G contains a subdivision of K_5 or a subdivision of $K_{3,3}$.