MATH 350: Graph Theory and Combinatorics. Fall 2016.

Assignment #(): Just a bunch of problems and exercises

Let G = (V, E) be a simple graph and let §(G) := min,cy degq(v).
a) @ contains a path of length ¢.
b) If §(G) > 2, then G contains a cycle of length at least § + 1.

*) If G is connected and has |V| = n vertices, then G contains a path of length
min{2§,n — 1}.

Recall that a complement of a simple graph G' = (V, E) is the graph G = (V, (‘2/) \E).
A simple graph G is called self-complementary if G is isomorphic to its complement

G.
a) Find a self-complementary graph G on at least two vertices.

b) Show that if G is an n-vertex self-complementary graph, then n = 4k or n =
4k 4 1 for some integer k£ > 0.

x) Construct a self-complementary graph on n vertices for infinitely many values
of n.

Let k > 2 be an integer.

a) Show that if G = (V, E) is a k-connected simple graph, then for any k-vertex
subset U C V there exists a cycle C in G such that U C V(C).

b) Construct a k-connected simple graph G = (V, E) that contains a (k+1)-vertex
subset U C V such that no cycle C in G satisfies U C V(C).

¢) Show that if G = (V, E) is a k-connected simple graph, then for any (k + 1)-
vertex subset U C V there exists a path P in G such that U C V(P).

d) Construct a k-connected simple graph G = (V, E') that contains a (k+2)-vertex
subset U C V such that no path P in G satisfies U C V(P).

Let G = (V, E) be a simple graph. Recall an edge e € F is called a cut-edge if
the number of connected components of the graph G — e is strictly larger than the
number of connected components of G. Also recall that a graph G is called k-regular
if every vertex has degree exactly k.

Prove that if G is a 2k-regular graph, then G contains no cut-edge.

Let G = (V, E) be a multigraph without loops such that ¢ > 0 vertices have an odd
degree.



a) Recall that ¢ must be even.

b) Show that if G is connected, then there exists tours 17, ...,Ty in G such that
every edge e € F is contained in exactly one of the tours.

A Hamiltonian path in a graph G = (V, E) is a path in G that contains all the
vertices, i.e., a path of length |V| — 1. Let G = (V, E) be a simple graph and let
J(G) := min,ey degg (v).

a) If §(G) > n/2, then G contains a Hamiltonian cycle.
b) If §(G) > (n—1)/2, then G contains a Hamiltonian path.

*) If 6(G) > n/2+4 1 and u,w € V are any two vertices of G, then G contains a
path from u to w of length |V|—1, i.e., a Hamiltonian path with the endpoints
u and w.

Let G = (V, E) be a simple bipartite graph with parts A and B such that |A| =
|B| = n.

a) If the minimum degree §(G) > n/2, then G contains a perfect matching.
b) Show that the minimum degree condition cannot be improved, i.e., construct

a bipartite graph G with parts A and B such that |A] = |B| = n so that

§(G) = | 25| and G has no perfect matching.

Show that any red/blue coloring of the edges of a complete graph on n vertices
contains a monochromatic tree on n vertices.

For an integer n, let KX be the complete graphs on n vertices with an additional
loop on each vertex, i.e., KX = (V, E) is a multigraph with loops such that |V| =n
and E = (4) UV. Decide whether the following Ramsey-type statement is true or
false: for any integer k there exists an integer n such that any red/blue coloring of
E(KE) contains a monochromatic copy of Ki.

For given integers k, ¢ and m, recall that R(k,£,m) is the smallest integer N such
that any red/blue/green coloring of E(K ) contains at least one of the following
subgraphs: a red copy of K}, a blue copy of Ky, or a green copy of K,,.

Prove that

(k+2+4+m—3)!

R(k,£,m) < (k— 10— 1) (m—1)

An nxn Latin square is a table with n rows and n columns, where each cell contains
one number between 1 and n in such a way that in each row every number appears
exactly once, and also in every column each number appears exactly once (similarly
as in Sudoku). See examples of a 3 x 3 and a 4 x 4 Latin squares.



11234
112 311142
21311 21411|3
3112 4131211

Analogously, for m < n, an m x n Latin rectangle is a table with m rows and n
columns where each cell contains one number between 1 and n in such a way that
in each row every number appears exactly once, and in every column each number
appears at most once.

Prove that for any m x n Latin rectangle there exists an n x n Latin square so that
the first m lines of the Latin square are equal to the lines of the rectangle.

Recall that Ford-Fulkerson Theorem states that in every network the value of a
maximum s — t-flow is equal to the capacity of a minimum s,¢-cut. Use this to
establish an alternative (and short) proof of Hall’s Theorem.

Let G = (V, E) be a simple graph such that all the vertices except a one have degree
at most 3, i.e., there is a vertex x € V so that degg(u) < 3 for all u € V' \ {z}.
Show that G is 4-colorable.

Let G = (V, E) be a simple graph. Show that there exists an ordering of V such
that the greedy coloring algorithm will find a coloring of G with x(G) colors.

Recall an orientation of a simple graph G = (V, E) is a function o : E — V that
each e € F assigns one of its endpoints, which is then called the head of e. The
other endpoint of e is called the tail of e. A triple (V| E,0), where (V, E) is a simple
graph and o an orientation of F is called an oriented graph. An oriented path |/
oriented cycle in an oriented graph is a path / cycle where each edge is traversed
from its tail to its head. An orientation of a simple graph G is called acyclic if the
resulting oriented graph contains no oriented cycle.

Show that every simple graph G has an acyclic orientation.

Prove that a simple graph G = (V, E) is k-colorable if and only if there exists
an acyclic orientation o of its edges so that (V,E,o0) contains no oriented path
of length k.

Let G = (V, E) be a simple graph with x(G) = k. Show that |E| > (}).

Let G = (V, E) be a simple graph with x(G) = k. Show that G contains a subgraph
H such that x(H) = k and for every vertex v € V(H) we have degy(v) >k — 1.

Let G = (V,E) be a simple graph on n vertices. Suppose V = {vy,...,v,} and
consider the following graph G’ on 2|V| + 1 vertices v}, v5, ..., v5,, 2



e On the first |V| vertices, put a copy of G,

e Foranyi € {n+1,n+2,...,2n} and j € {1,2,...,n}, connect v; to v’ if and
only if v;_, is adjacent to v; in G,

e the vertices {v],1,v],,0,...,0y,} form an independent set in G', and
e the vertex z is adjacent to all v], 1,0, o,...,05,.
For example, if G is an edge, then G’ is a 5-cycle.

a) Prove that if G is triangle-free, then G’ is triangle-free as well.

b) Show that x(G') = x(G) + 1.

Let G = (V, E) be a loopless multigraph and let H C G be a subgraph of G with k
vertices such that k is odd and k > 3. Show that

NOHE=

Let G = (V, E) be a loopless multigraph with maximum degree A(G) = A. In the
lecture, we have shown that x'(G) < 3[5]. Now, prove that

A
X'(G) < {?)QJ (which is the same for A even, but better for A odd).

(Hint: distinguish the cases u(G) < A/2 and u(G) > A/2. In the first case, use
Vizing’s theorem; otherwise do something and then use the bound from the lecture.)

a) Construct a 5-regular simple graph that is planar.
b) What is the minimum number k of vertices of such a graph?

¢) If your graph in (a) had more vertices than k, construct another 5-regular planar
graph that has exactly k vertices.

Find a planar graph that is isomorphic to its dual.

Let H be a simple graph with maximum degree at most 3. Show that a simple
graph G contains a subdivision of H if and olny if G contains H as a minor.

Let G be a simple graph that contains K5 as a minor. Prove that G contains a
subdivision of K5 or a subdivision of K3 3.



