
MATH 350: Graph Theory and Combinatorics. Fall 2016.

Assignment #∅: Just a bunch of problems and exercises

Let G = (V,E) be a simple graph and let δ(G) := minv∈V degG(v).

a) G contains a path of length δ.

b) If δ(G) ≥ 2, then G contains a cycle of length at least δ + 1.

?) If G is connected and has |V | = n vertices, then G contains a path of length
min{2δ, n− 1}.

Recall that a complement of a simple graph G = (V,E) is the graphG = (V,
(
V
2

)
\E).

A simple graph G is called self-complementary if G is isomorphic to its complement
G.

a) Find a self-complementary graph G on at least two vertices.

b) Show that if G is an n-vertex self-complementary graph, then n = 4k or n =
4k + 1 for some integer k ≥ 0.

?) Construct a self-complementary graph on n vertices for infinitely many values
of n.

Let k ≥ 2 be an integer.

a) Show that if G = (V,E) is a k-connected simple graph, then for any k-vertex
subset U ⊆ V there exists a cycle C in G such that U ⊆ V (C).

b) Construct a k-connected simple graph G = (V,E) that contains a (k+1)-vertex
subset U ⊆ V such that no cycle C in G satisfies U ⊆ V (C).

c) Show that if G = (V,E) is a k-connected simple graph, then for any (k + 1)-
vertex subset U ⊆ V there exists a path P in G such that U ⊆ V (P ).

d) Construct a k-connected simple graph G = (V,E) that contains a (k+2)-vertex
subset U ⊆ V such that no path P in G satisfies U ⊆ V (P ).

Let G = (V,E) be a simple graph. Recall an edge e ∈ E is called a cut-edge if
the number of connected components of the graph G− e is strictly larger than the
number of connected components of G. Also recall that a graph G is called k-regular
if every vertex has degree exactly k.
Prove that if G is a 2k-regular graph, then G contains no cut-edge.

Let G = (V,E) be a multigraph without loops such that ` > 0 vertices have an odd
degree.



a) Recall that ` must be even.

b) Show that if G is connected, then there exists tours T1, . . . , T` in G such that
every edge e ∈ E is contained in exactly one of the tours.

A Hamiltonian path in a graph G = (V,E) is a path in G that contains all the
vertices, i.e., a path of length |V | − 1. Let G = (V,E) be a simple graph and let
δ(G) := minv∈V degG(v).

a) If δ(G) ≥ n/2, then G contains a Hamiltonian cycle.

b) If δ(G) ≥ (n− 1)/2, then G contains a Hamiltonian path.

?) If δ(G) ≥ n/2 + 1 and u,w ∈ V are any two vertices of G, then G contains a
path from u to w of length |V |−1, i.e., a Hamiltonian path with the endpoints
u and w.

Let G = (V,E) be a simple bipartite graph with parts A and B such that |A| =
|B| = n.

a) If the minimum degree δ(G) ≥ n/2, then G contains a perfect matching.

b) Show that the minimum degree condition cannot be improved, i.e., construct
a bipartite graph G with parts A and B such that |A| = |B| = n so that
δ(G) =

⌊
n−1

2

⌋
and G has no perfect matching.

Show that any red/blue coloring of the edges of a complete graph on n vertices
contains a monochromatic tree on n vertices.

For an integer n, let KL
n be the complete graphs on n vertices with an additional

loop on each vertex, i.e., KL
n = (V,E) is a multigraph with loops such that |V | = n

and E =
(
V
2

)
∪ V . Decide whether the following Ramsey-type statement is true or

false: for any integer k there exists an integer n such that any red/blue coloring of
E(KL

n ) contains a monochromatic copy of KL
k .

For given integers k, ` and m, recall that R(k, `,m) is the smallest integer N such
that any red/blue/green coloring of E(KN ) contains at least one of the following
subgraphs: a red copy of Kk, a blue copy of K`, or a green copy of Km.
Prove that

R(k, `,m) ≤ (k + `+m− 3)!

(k − 1)!(`− 1)!(m− 1)!
.

An n×n Latin square is a table with n rows and n columns, where each cell contains
one number between 1 and n in such a way that in each row every number appears
exactly once, and also in every column each number appears exactly once (similarly
as in Sudoku). See examples of a 3× 3 and a 4× 4 Latin squares.



1 2 3
2 3 1
3 1 2

1 2 3 4
3 1 4 2
2 4 1 3
4 3 2 1

Analogously, for m ≤ n, an m × n Latin rectangle is a table with m rows and n
columns where each cell contains one number between 1 and n in such a way that
in each row every number appears exactly once, and in every column each number
appears at most once.
Prove that for any m×n Latin rectangle there exists an n×n Latin square so that
the first m lines of the Latin square are equal to the lines of the rectangle.

Recall that Ford-Fulkerson Theorem states that in every network the value of a
maximum s → t-flow is equal to the capacity of a minimum s, t-cut. Use this to
establish an alternative (and short) proof of Hall’s Theorem.

Let G = (V,E) be a simple graph such that all the vertices except a one have degree
at most 3, i.e., there is a vertex x ∈ V so that degG(u) ≤ 3 for all u ∈ V \ {x}.
Show that G is 4-colorable.

Let G = (V,E) be a simple graph. Show that there exists an ordering of V such
that the greedy coloring algorithm will find a coloring of G with χ(G) colors.

Recall an orientation of a simple graph G = (V,E) is a function o : E → V that
each e ∈ E assigns one of its endpoints, which is then called the head of e. The
other endpoint of e is called the tail of e. A triple (V,E, o), where (V,E) is a simple
graph and o an orientation of E is called an oriented graph. An oriented path /
oriented cycle in an oriented graph is a path / cycle where each edge is traversed
from its tail to its head. An orientation of a simple graph G is called acyclic if the
resulting oriented graph contains no oriented cycle.
Show that every simple graph G has an acyclic orientation.

Prove that a simple graph G = (V,E) is k-colorable if and only if there exists
an acyclic orientation o of its edges so that (V,E, o) contains no oriented path
of length k.

Let G = (V,E) be a simple graph with χ(G) = k. Show that |E| ≥
(
k
2

)
.

Let G = (V,E) be a simple graph with χ(G) = k. Show that G contains a subgraph
H such that χ(H) = k and for every vertex v ∈ V (H) we have degH(v) ≥ k − 1.

Let G = (V,E) be a simple graph on n vertices. Suppose V = {v1, . . . , vn} and
consider the following graph G′ on 2|V |+ 1 vertices v′1, v

′
2, . . . , v

′
2n, z:



• On the first |V | vertices, put a copy of G,

• For any i ∈ {n+ 1, n+ 2, . . . , 2n} and j ∈ {1, 2, . . . , n}, connect v′i to v′j if and
only if vi−n is adjacent to vj in G,

• the vertices {v′n+1, v
′
n+2, . . . , v

′
2n} form an independent set in G′, and

• the vertex z is adjacent to all v′n+1, v
′
n+2, . . . , v

′
2n.

For example, if G is an edge, then G′ is a 5-cycle.

a) Prove that if G is triangle-free, then G′ is triangle-free as well.

b) Show that χ(G′) = χ(G) + 1.

Let G = (V,E) be a loopless multigraph and let H ⊆ G be a subgraph of G with k
vertices such that k is odd and k ≥ 3. Show that

χ′(G) ≥
⌈

2|E(H)|
k − 1

⌉
.

Let G = (V,E) be a loopless multigraph with maximum degree ∆(G) = ∆. In the
lecture, we have shown that χ′(G) ≤ 3d∆

2 e. Now, prove that

χ′(G) ≤
⌊

3∆

2

⌋
(which is the same for ∆ even, but better for ∆ odd).

(Hint: distinguish the cases µ(G) ≤ ∆/2 and µ(G) > ∆/2. In the first case, use
Vizing’s theorem; otherwise do something and then use the bound from the lecture.)

a) Construct a 5-regular simple graph that is planar.

b) What is the minimum number k of vertices of such a graph?

c) If your graph in (a) had more vertices than k, construct another 5-regular planar
graph that has exactly k vertices.

Find a planar graph that is isomorphic to its dual.

Let H be a simple graph with maximum degree at most 3. Show that a simple
graph G contains a subdivision of H if and olny if G contains H as a minor.

Let G be a simple graph that contains K5 as a minor. Prove that G contains a
subdivision of K5 or a subdivision of K3,3.


