Instructions: The exam is 3 hours long and contains 6 questions. The total number of points is 100. Write your answers clearly in the notebook provided. You may quote any result/theorem seen in the lectures without proving it. **Justify all your answers!**

Q1 Let G be the graph depicted in Figure 1.

a) Is G planar?	$(4 \ points)$
b) Find $\nu(G)$ and $\tau(G)$.	(4 points)
c) Find $\chi(G)$.	(4 points)
d) Find $\chi'(G)$.	(4 points)

Q2 Let $\overrightarrow{G} = (V, E)$ be the oriented graph with the two specific vertices s and t and with the capicities $c : E \to \mathbb{Z}_+$ depicted in Figure 2.

a) Find a maximum flow from the vertex s to the vertex t .	$(8 \ points)$
b) Find a minimum s, t -cut.	$(8 \ points)$

Q3 Let G = (V, E) be the simple graph with weights $w : E \to \mathbb{Z}_+$ obtained from the oriented graph depicted in Figure 2 by replacing each oriented edge by a non-oriented one that has the same weight.

a)	Find a minimum-cost	spanning	tree in G .	(8	points)
----	---------------------	----------	---------------	----	---------

- **b)** Does G have a unique minimum-cost spanning tree. (8 points)
- Q4 Let $k \ge 1$ be an integer, and let G be a connected 2k-regular graph. Show that G is 2-edge-connected. (17 points)
- Q5 Let G be a simple planar graph. Prove that if G contains no cycle of length five or less, then $\chi(G) \leq 3$. (17 points)
- **Q6** Let K_4^- be the 4-vertex graph obtained from K_4 by removing one edge. How many non-isomorphic simple 2-connected graphs G = (V, E) are there with |V| = 1000 such that G has no K_4^- -minor? (18 points)



Figure 1: The graph in the question Q1.

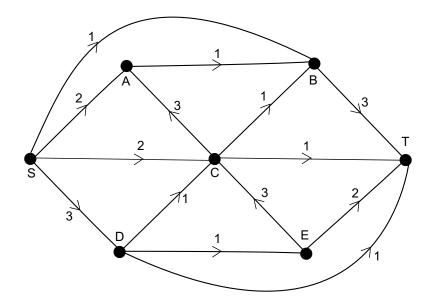


Figure 2: The oriented graph in the questions Q2 and Q3.