A matching in a graph G = (V, E) is a set of edges $M \subseteq E$ such that every vertex $v \in V$ is an endpoint of at most one edge in M. A matching is called *perfect*, if every $v \in V$ is incident to exactly one edge in M. For a bipartite graph G with parts A and B, we say that a matching M is A-covering, if every vertex $v \in A$ is incident to exactly one edge.

For a graph G = (V, E) and a set $U \subseteq V$, let

$$N_G(U) := \{ x \in V | \{u, x\} \in E \text{ for some } u \in U \}$$

be the neighborhood of U in G.

Theorem 1 (Hall's Theorem). Let G be a bipartite graph with parts A and B. G contains an A-covering matching if and only if $|N_G(A')| \ge |A'|$ for all $A' \subseteq A$.

Proof. The condition $|N_G(A')| \ge |A'|$ for all $A' \subseteq A$, which we will call the *Hall's condition*, is clearly satisfied if G contains an A-covering (because there are |A'| vertices in B that are incident to the edges of an A-covering matching, and every such vertex is contained in $N_G(A')$).

For the rest of the proof, we focus on showing that if a graph G satisfies the Hall's condition, then it contains an A-covering matching. We proceed by induction on |A|. If |A| = 1, then the Hall's condition applied to A' = Aguarantees that the single vertex $v \in A$ has at least one neighbor. Let $w \in B$ be one such a neighbor. It follows that $\{v, w\}$ is an A-covering matching.

Suppose $|A| \ge 2$. We consider the following two exclusive options:

- 1. there exists A_0 such that $\emptyset \subsetneq A_0 \subsetneq A$ and $|N_G(A_0)| = |A_0|$,
- 2. for every A' such that $\emptyset \subsetneq A' \subsetneq A$, we have $|N_G(A')| \ge 1 + |A'|$.

Let us start with the second option. Fix an arbitrary $v \in A$. By the Hall's condition, v has at least one neighbor, say $w \in B$. Define G' := G - v - w. If we manage to verify the Hall's condition for G', we can apply induction and obtain $(A \setminus \{v\})$ -covering matching M'. It follows that $M := M' \cup \{v, w\}$ is then an A-covering matching in G. So it remains to check that $|N_{G'}(A')| \geq |A'|$ for every non-empty $A' \subseteq A \setminus \{v\}$. We claim this follows from that "additional +1" we have in the second option. Indeed,

$$|N_{G'}(A')| \ge |N_G(A')| - 1 \ge |A'| + 1 - 1 = |A'|,$$

where the first inequality follows from the fact that $N_{G'}(A')$ may differ from $N_G(A')$ only on the vertex $\{w\}$, and the second inequality uses the "additional +1". It remains to resolve the first option, where there is some non-empty $A_0 \subsetneq A$ such that $|N_G(A_0)| = |A_0|$. Let $A_1 := A \setminus A_0$ and, let G_0 be the subgraph of G induced by $V \setminus A_1$. Our aim is to apply induction on G_0 in order to find an A_0 -covering matching in G_0 . To do so, it is enough to verify whether G_0 satisfies the Hall's condition. But this follows easily: for every $A' \subseteq A_0$ it holds that $N_{G_0}(A') = N_G(A')$, and by the assumption $|N_G(A')| \ge |A'|$, we know that $|N_{G_0}(A')| \ge |A'|$ must hold as well. Therefore, there exists an A_0 -covering matching M_0 in G_0 , which is also a matching in G.

The only remaining task is to find a matching M_1 that will cover the vertices in A_1 and will be "compatible" with M_0 , which means, the union $M_0 \cup M_1$ will be a matching in G. Let G_1 be the subgraph of G induced by $V \setminus (A_0 \cup N_G(A_0))$. Our aim is to use the induction hypothesis once again, this time in order to find an A_1 -covering matching in the graph G_1 . If we want to use induction (again?), we need to verify the Hall's condition (again!), this time on the graph G_1 . In other words, we need to show that $|N_{G_1}(A')| \geq |A'|$ for every $A' \subseteq A_1$. We claim that the desired inequality for a fixed A' follows from the Hall's condition for G applied to the set $A'' := A_0 \cup A'$. Indeed, on one hand

$$|N_G(A'')| = |N_G(A_0)| + |N_G(A') \setminus N_G(A_0)| = |A_0| + |N_{G_1}(A')|,$$

where we used that $|A_0| = |N_G(A_0)|$ and $N_G(A') \setminus N_G(A_0) = N_{G_1}(A')$. On the other hand,

$$|A''| = |A_0| + |A'|,$$

simply because the sets A_0 and A' are disjoint. Putting these two equations together with the assumption $|N_G(A'')| \ge |A''|$ yields that

$$|N_{G_1}(A')| = |N_G(A'')| - |A_0| \ge |A''| - |A_0| = |A'| + |A_0| - |A_0| = |A'|.$$

Voila, the graph G_1 satisfies the Hall's condition, induction can be applied, and provides us an A_1 -covering matching M_1 , which by the construction of G_1 is completely disjoint from M_0 . Therefore, $M_0 \cup M_1$ is a matching in Gthat is A-covering.