1.

Let G be the set of all simple graphs G with |[V(G)| = 9 such that
e (G has three vertices of degree 3,
e (& has three vertices of degree 5, and

e (& has three vertices of degree 6.

a) Construct a graph G € G that has a Hamilton cycle.

Solution:
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Figure 1: A graph G € G with a Hamilton cycle used in the solution of Problem 1a).

Consider the 9 vertex graph which consists of six vertices {ay,...,ag} that
induces a copy of K4 and three vertices {by, bo, b3} that induces a copy of K,
plus three extra edges {a, b1}, {az, b2} and {ag, bs}. It follows that the vertices
a1, as and ag have degree 6, the vertices a4, a; and ag have degree 5, and the
vertices by, by and b3 have degree 3. It is also easy to find a Hamilton cycle in
G} see Figure 1.

b) Prove that every graph G € G is 2-connected.

Solution: Suppose there is G € G that is not 2-connected. By Menger’s
theorem, there exists S C V(G) such that |[S| < 1 and G — S is disconnected.
First let us look at the case |S| = 1.

Suppose there is a vertex v € V(G) such that G’ := G —wv is not connected. Let
C1 be a connected component of G’ that contains at least one of the vertices
that has degree 6 in G (there are at least two such vertices; note that the vertex
v might had degree 6), and let Cy be a connected component of G’ different
from Cy. Tt follows that C; contains a vertex of degree at least 5, so |C| > 6.
Therefore, |Cy| < 2. But this means that each vertex from Cy can have at most
2 neighbors in G, which contradicts G € G.



It remains to argue that there is no cut of size zero, i.e., the graph G itself is
connected. Indeed, otherwise let C'; and C5 be two connected components in
G. Since every vertex in G has degree at least 3, it follows that |C| > 3. Fix
v € C arbitrarily and consider G’ := G — v. It follows that C; — v and C5 are
two connected components of G', so GG’ is disconnected, which contradicts the
conclusion of the previous paragraph.

c) Is there a graph G € G that is bipartite?
(If yes, construct a one. If no, prove it!)

Solution: NO. Suppose there is G € G such that G is bipartite, and let A and
B be the parts of a bipartition of G. Without loss of generality, the part A
contains a vertex of degree 6. Therefore, |B| > 6 and hence |A| < 3. So every
vertex of G that has degree at least 4 must be contained in A, but there are
six such vertices in GG; a contradiction.

d) Is it true that every graph G € G has a Hamilton cycle?
(If yes, prove it! If no, construct a graph G € G and show G has no Hamilton
cycle.)

Figure 2: A graph G € G with no Hamilton cycle used in the solution of Problem 1d).

Solution: NO. Let G be the graph depicted in Figure 2. It is straightforward
to verify that G € G. Now suppose that G contains a Hamilton cycle C.
Since C'is a cylce, the number of edges of C' incident to each vertex c;, where
i € {1,2,3}, is equal to two. All these six edges must have their other endpoints
in {ay,as,as}. However, there also must be an edge in C' with one endpoint
in {by,by,b3} and the other endpoint in {a;,as, as} (in fact, there must be at
least two such edges). But this means that the vertices a;, as and az are in C'
incident to at least 7 edges contradicting that C' is a cycle.



2. Let G = (V,E) be a simple graph. A set A C V is called an independent set
in G if the induced subgraph G[A] contains no edge, i.e., if every edge e € E is
incident to at most one vertex in A. Define a(G) to be the maximum cardinality of
an independent set in G.

Suppose G = (V, E) is a simple graph. Prove that there is an integer ¢ < a(Q)
and a collection of paths P, P, ..., Py, such that for every vertex v € V there exists
exactly one path P;, where i € {1,...,(}, with v € V(B).

Solution: First, let us show that for some integer ¢ (maybe ¢ > «(G)), there exists a
collection of paths Py, ..., P, with the property that every vertex v € V' is in exactly
one P;,. Indeed, for ¢ = |V| the task is trivial — just consider |V| one-vertex paths,
each containing a different vertex of G.

Now let £y be the minimum ¢ such that there exists a collection of paths P,..., P,
with the property that every vertex v € V' is in exactly one P;. Suppose ¢y > a(G),
and let Py, ..., Py, be the appropriate paths. For each i € {1,... 4}, let u; be one
of the two end-vertices of the path P,. Set U := {uy,us,...,us}. Since the paths
Py, ..., P, were disjoint, we have |U| = ¢y > «(G). But this means U cannot be
independent, so it contains an edge {u;, u;} for some distinct ¢, 5 € {1,...,4}. Let
() be the graph with the vertex set V(FP;) UV (F;) and the edge set E(F;) U E(P;) U
{u;, u;}. It follows that ) is a path. But then replacing the paths P, and P; with @)
yields a collection of ¢y — 1 paths such that every vertex v € V is in exactly one of
them; a contradiction with the minimality of £.



3. Let G = (V, F) be a bipartite graph with parts A and B. Recall that for S C A,
Ng(S) :={z € V|{s,z} € E for some s € S}.

a) Show that if M is a matching in G and S C A, then |A| — |M| > |S| — | Na(9)].
Solution:

Let Uy C A be the set of vertices from A that are “unmatched” by M, i.e.,
not incident to any edge e € M. It follows that |Us| = |A| — |M|. Now let
Us := Uaq NS be the set of vertices from S that are unmatched by M. Clearly
|Ua| > |Us|, so it is enough to show |Us| > |S| — |Na(S)].

Let mg be the number of vertices from S that are matched by M. On one

hand, mg = |S| — |Us|. On the other hand, mg < |Ng(S)|. Therefore, |Ug| >
|S| — | Ng(S)| and hence also |A| — |M| > |S| — | Ng(S)|.

b) Show that M is a matching in G of the maximum size if and only if there exists
some Sy C A such that |A| — |M| = |So| — |Na(So)|-

Solution: First we show that if M is a maximum matching, then we can find
a set Sp such that |A| — |M]| = |So| — |Ng(So)|. Let X be a minimum vertex
cover of G. Since G is bipartite, by Kénig’s theorem we know |M| = | X]| so it
is enough to find Sy such that |A| — | X| = |So| — [N (So)|-

Let X4 := XNA, Xp:=XNDBand Sy := A\ Xa. By definition, |Sy| =
|A] — | Xal]. Also, since X is a vertex cover of G, it holds that Ng(Sp) C Xp.
On the other hand, if there would be a vertex u € Xp \ Ng(S5), then X — u is
also a vertex cover of G contradicting the minimality of X. We conclude that
N (So) = Xpg. Therefore,

Al = [M] = [A] = [X] = [A] = [Xa] = [X5] = |So| — [Na(S0)].

It remains to show that if Sy C A is such that |A| — [M| = |So| — | Ng(So)| for
some matching M, then M must be a matching of maximum size. Indeed, if
there exists a matching M’ such that |M| < |M'|, then

[ Al = [M'] < |A] = |M] = |So| = [Ne(So)l-

But this is a contradiction with the part (a).



