
1. Let G be the set of all simple graphs G with |V (G)| = 9 such that

• G has three vertices of degree 3,

• G has three vertices of degree 5, and

• G has three vertices of degree 6.

a) Construct a graph G ∈ G that has a Hamilton cycle.

Solution:
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Figure 1: A graph G ∈ G with a Hamilton cycle used in the solution of Problem 1a).

Consider the 9 vertex graph which consists of six vertices {a1, . . . , a6} that
induces a copy of K6 and three vertices {b1, b2, b3} that induces a copy of K3,
plus three extra edges {a1, b1}, {a2, b2} and {a3, b3}. It follows that the vertices
a1, a2 and a3 have degree 6, the vertices a4, a5 and a6 have degree 5, and the
vertices b1, b2 and b3 have degree 3. It is also easy to find a Hamilton cycle in
G; see Figure 1.

b) Prove that every graph G ∈ G is 2-connected.

Solution: Suppose there is G ∈ G that is not 2-connected. By Menger’s
theorem, there exists S ⊆ V (G) such that |S| ≤ 1 and G− S is disconnected.
First let us look at the case |S| = 1.

Suppose there is a vertex v ∈ V (G) such that G′ := G−v is not connected. Let
C1 be a connected component of G′ that contains at least one of the vertices
that has degree 6 in G (there are at least two such vertices; note that the vertex
v might had degree 6), and let C2 be a connected component of G′ different
from C1. It follows that C1 contains a vertex of degree at least 5, so |C1| ≥ 6.
Therefore, |C2| ≤ 2. But this means that each vertex from C2 can have at most
2 neighbors in G, which contradicts G ∈ G.



It remains to argue that there is no cut of size zero, i.e., the graph G itself is
connected. Indeed, otherwise let C1 and C2 be two connected components in
G. Since every vertex in G has degree at least 3, it follows that |C1| ≥ 3. Fix
v ∈ C1 arbitrarily and consider G′ := G− v. It follows that C1 − v and C2 are
two connected components of G′, so G′ is disconnected, which contradicts the
conclusion of the previous paragraph.

c) Is there a graph G ∈ G that is bipartite?

(If yes, construct a one. If no, prove it!)

Solution: NO. Suppose there is G ∈ G such that G is bipartite, and let A and
B be the parts of a bipartition of G. Without loss of generality, the part A
contains a vertex of degree 6. Therefore, |B| ≥ 6 and hence |A| ≤ 3. So every
vertex of G that has degree at least 4 must be contained in A, but there are
six such vertices in G; a contradiction.

d) Is it true that every graph G ∈ G has a Hamilton cycle?

(If yes, prove it! If no, construct a graph G ∈ G and show G has no Hamilton
cycle.)
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Figure 2: A graph G ∈ G with no Hamilton cycle used in the solution of Problem 1d).

Solution: NO. Let G be the graph depicted in Figure 2. It is straightforward
to verify that G ∈ G. Now suppose that G contains a Hamilton cycle C.
Since C is a cylce, the number of edges of C incident to each vertex ci, where
i ∈ {1, 2, 3}, is equal to two. All these six edges must have their other endpoints
in {a1, a2, a3}. However, there also must be an edge in C with one endpoint
in {b1, b2, b3} and the other endpoint in {a1, a2, a3} (in fact, there must be at
least two such edges). But this means that the vertices a1, a2 and a3 are in C
incident to at least 7 edges contradicting that C is a cycle.



2. Let G = (V,E) be a simple graph. A set A ⊆ V is called an independent set
in G if the induced subgraph G[A] contains no edge, i.e., if every edge e ∈ E is
incident to at most one vertex in A. Define α(G) to be the maximum cardinality of
an independent set in G.
Suppose G = (V,E) is a simple graph. Prove that there is an integer ` ≤ α(G)
and a collection of paths P1, P2, . . . , P` such that for every vertex v ∈ V there exists
exactly one path Pi, where i ∈ {1, . . . , `}, with v ∈ V (Pi).

Solution: First, let us show that for some integer ` (maybe ` > α(G)), there exists a
collection of paths P1, . . . , P` with the property that every vertex v ∈ V is in exactly
one Pi. Indeed, for ` = |V | the task is trivial – just consider |V | one-vertex paths,
each containing a different vertex of G.
Now let `0 be the minimum ` such that there exists a collection of paths P1, . . . , P`

with the property that every vertex v ∈ V is in exactly one Pi. Suppose `0 > α(G),
and let P1, . . . , P`0 be the appropriate paths. For each i ∈ {1, . . . , `0}, let ui be one
of the two end-vertices of the path Pi. Set U := {u1, u2, . . . , u`0}. Since the paths
P1, . . . , P`0 were disjoint, we have |U | = `0 > α(G). But this means U cannot be
independent, so it contains an edge {ui, uj} for some distinct i, j ∈ {1, . . . , `0}. Let
Q be the graph with the vertex set V (Pi)∪ V (Pj) and the edge set E(Pi)∪E(Pj)∪
{ui, uj}. It follows that Q is a path. But then replacing the paths Pi and Pj with Q
yields a collection of `0 − 1 paths such that every vertex v ∈ V is in exactly one of
them; a contradiction with the minimality of `0.



3. Let G = (V,E) be a bipartite graph with parts A and B. Recall that for S ⊆ A,

NG(S) := {x ∈ V |{s, x} ∈ E for some s ∈ S} .

a) Show that if M is a matching in G and S ⊆ A, then |A| − |M | ≥ |S| − |NG(S)|.
Solution:

Let UA ⊆ A be the set of vertices from A that are “unmatched” by M , i.e.,
not incident to any edge e ∈ M . It follows that |UA| = |A| − |M |. Now let
US := UA ∩ S be the set of vertices from S that are unmatched by M . Clearly
|UA| ≥ |US|, so it is enough to show |US| ≥ |S| − |NG(S)|.
Let mS be the number of vertices from S that are matched by M . On one
hand, mS = |S| − |US|. On the other hand, mS ≤ |NG(S)|. Therefore, |US| ≥
|S| − |NG(S)| and hence also |A| − |M | ≥ |S| − |NG(S)|.

b) Show that M is a matching in G of the maximum size if and only if there exists
some S0 ⊆ A such that |A| − |M | = |S0| − |NG(S0)|.
Solution: First we show that if M is a maximum matching, then we can find
a set S0 such that |A| − |M | = |S0| − |NG(S0)|. Let X be a minimum vertex
cover of G. Since G is bipartite, by König’s theorem we know |M | = |X| so it
is enough to find S0 such that |A| − |X| = |S0| − |NG(S0)|.
Let XA := X ∩ A, XB := X ∩ B and S0 := A \ XA. By definition, |S0| =
|A| − |XA|. Also, since X is a vertex cover of G, it holds that NG(S0) ⊆ XB.
On the other hand, if there would be a vertex u ∈ XB \NG(S0), then X − u is
also a vertex cover of G contradicting the minimality of X. We conclude that
NG(S0) = XB. Therefore,

|A| − |M | = |A| − |X| = |A| − |XA| − |XB| = |S0| − |NG(S0)|.

It remains to show that if S0 ⊆ A is such that |A| − |M | = |S0| − |NG(S0)| for
some matching M , then M must be a matching of maximum size. Indeed, if
there exists a matching M ′ such that |M | < |M ′|, then

|A| − |M ′| < |A| − |M | = |S0| − |NG(S0)|.

But this is a contradiction with the part (a).


