
MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #3: Menger’s theorem and network flows

Due Wednesday, November 2nd, 2016, 14:30

1. Let G = (V,E) be a simple graph and let U ⊆ V . We define G ⊕U {v} to be
the graph obtained from G by adding a new vertex v, which is then joined to every
vertex in U . In other words, G⊕U {v} = (V ∪ {v}, E ∪ {{u, v} : u ∈ U}).

a) Prove that if G = (V,E) is a k-connected simple graph and U ⊆ V has size k,
then the graph G⊕U {v} is k-connected as well.

Solution: Suppose for a contradiction G′ := G ⊕U {v} is not k-connected.
By Menger’s theorem, there exists a vertex cut S ⊆ V (G′) of size at most
k − 1. Clearly, if v ∈ S, then G′ − S is actually a subgraph of G with at
least |V | − k − 2 vertices, which is definitely connected (in fact, it is even
2-connected) by the connectivity assumption on G.

Now consider v /∈ S. Let C1 and C2 be different connected components of
G′ − S. We claim that both C1 and C2 contain a vertex from the set V . If
not, then one of the components, say C1, would contain only the vertex v.
However, since |U | = k, there is at least one vertex u ∈ U \S, and this vertex
must be in C1 as well; a contradiction.

Let u1 ∈ V (C1) ∩ V and u2 ∈ V (C2) ∩ V . It follows that every path in G
between u1 and u2 have to pass through the set S, which is a contradiction
with G being k-connected.

b) For every integer k > 1, find a simple graph Gk = (Vk, Ek) on at least k + 1
vertices and a vertex-subset U ⊆ Vk of size k such that Gk is not k-connected,
however, Gk ⊕U {v} is k-connected.

Solution: There was a typo in the original statement – one has to assume k > 1
since the statement is clearly false for k = 1. The points for this part will not be
counted to the regular score. You get a bonus point if you have spotted the mistake
and constructed a counter-example for the case k = 1. You get extra 2 points if you
have constructed the graphs Gk for any k ≥ 2.

Fix an integer k ≥ 2. Let V := {v1, v2, . . . , vk+1} and letGk :=
(
V,
(
V
2

)
\ {k, k + 1}

)
.

In other words, Gk is obtained from a complete graph on k+1 vertices by removing
one edge. Clearly, this graph is not k-connected because the set {v1, . . . , vk−1} is a
vertex cut in Gk of size k− 1. Let U := {2, 3, . . . , vk+1}, and G′k := Gk⊕U {v}. We
claim G′k is k-connected.
Indeed, consider S ⊆ V (G′k) a vertex cut in G′k. By Menger’s theorem, it is enough
to show |S| ≥ k. First, observe that for any i ∈ {2, 3, . . . , k − 1}, the vertex vi is
connected to every other vertex in G′k. Therefore, any vertex cut in G′k must contain
all the vertices from {v2, v3, . . . , vk−1}, so |S| ≥ k− 2. But G′k − {v2, v3, . . . , vk−1},
i.e., the subgraph of G′k induced by {v1, vk, vk+1, v}, is isomorphic to C4, so |S| ≥
k − 1. However, if |S| = k − 1, then by the argument above S contains exactly one
vertex from {v1, vk, vk+1, v}. Therefore G′k − S is isomorphic to a path of length
two, a contradiction.



2. Let G = (V,E) be a k-connected simple graph and U,W ⊆ V two vertex-subsets,
each of size k. Prove that there exist k pairwise vertex-disjoint paths P1, . . . Pk such
that for every i ∈ {1, . . . , k}, the path Pi have one endpoint in U and the other
endpoint in W .

Solution: Let G′ := (G⊕U u)⊕W w. By the part (a) of the previous exercise, G′ is
k-connected. Therefore, G′ contains k internally disjoint paths Q1, . . . , Qk between
u and w. For every i ∈ {1, . . . , k}, let Pi := Qi − u− w. It follows that these are k
vertex-disjoint paths in G, each with exactly one end in U and the other in W .

3. Let G = (V,E) be a 2-connected simple graph. Show that for any triple of
distinct vertices u, v, w ∈ V there is a path in G from u to v passing through w,
i.e., w is one of the inner vertices of the path.
Solution: Let G′ := G ⊕U z for U := {u, v}. Again, the first part of Exercise 1
yields that G′ is 2-connected. Hence G′ contains 2 internally vertex-disjoint paths
Q1 and Q2 between z and w. Taking their union and removing the vertex z yields
the desired path between u and v that passes through w.

4. Let G = (V,E) be a 2-connected simple graph and v ∈ V a vertex of G. Prove
that there exists a vertex u ∈ V such that {u, v} ∈ E and the graph G − u − v is
connected.
Solution: Let U be the set of neighbors of v in G. Let T be a connected subgraph
of G − v with the minimum number of edges such that U ⊆ V (T ). It is easy to
see that T is a tree, and that every leaf of T is a neighbor of v. Let u be a leaf
of T . Then T − u is connected. Suppose for a contradiction that G − u − v is not
connected and consider a component C of G− u− v which does not contain T − u.
Thus C contains no neighbor of v and so it is a connected component of G− u. It
follows that G− u is not connected, contradicting 2-connectivity of G.

5. Let G = (V,E) be a directed graph (digraph) and for each edge e ∈ E, let
φ(e) ≥ 0 be a non-negative integer. Show that if for every vertex v∑

e∈∂−(v)

φ(e) =
∑

e∈∂+(v)

φ(e) ,

then there is a collection of directed cycles C1, ..., Ck (possibly with repetition) so
that for every edge e of G, it holds that

|{i : 1 ≤ i ≤ k, e ∈ E(Ci)}| = φ(e).

Solution: Induction on S :=
∑

e∈E(G) φ(e). Base case: S = 0 is trivial. For the

induction step, it suffices to find a directed cycle C in G so that φ(e) ≥ 1 for every
edge e ∈ E(G), as one can then apply the induction hypothesis to

φ′(e) :=

{
φ(e), if e 6∈ E(C)

φ(e)− 1, if e ∈ E(C)

Let e be an edge of G with φ(e) ≥ 1, a tail u and a head v. Then φ restricted to
E(G) − e is a v-u-flow of value 1. By Lemma 11.3 from the lecture notes, there
exists a directed path P in G − e so that φ is positive on every edge of the path.
The path P together with e forms the desired cycle.


