MATH 350: Graph Theory and Combinatorics. Fall 2016. Assignment #4: Ramsey theory, Matchings, Colorings

Due Wednesday, November 16th, 2016, 14:30

- **1.** Recall that $R(k, \ell)$ is the minimum integer *n* such that every red/blue coloring of $E(K_n)$ contains a red K_k or blue K_ℓ .
- a) Construct a red/blue coloring of $E(K_8)$ such that the coloring contains neither red K_3 nor blue K_4 .

Solution: Consider the following red/blue coloring of $E(K_8)$ where only red edges are drawn (i.e., the non-edges in the figure are the blue edges in the coloring):

Figure 1: The red subgraph of a red/blue coloring of $E(K_8)$ which shows that R(3,4) > 8.

Clearly, there is no red triangle. A blue K_4 corresponds to an independent set of size 4 in the depicted graph. Such an independent set would contain exactly two vertices from the outer 4-cycle. By symmetry, say the top-left v_1 and the right-bottom vertex v_3 . However, it is impossible to add 2 inner vertices w_i, w_j so that $\{v_1, v_3, w_i, w_j\}$ is independent.

b) Prove that R(3, 4) = 9.

Solution: By (a), it is enough to show that every red/blue coloring of $E(K_9)$ contains a red K_3 or blue K_4 . First, recall that R(3,3) = 6 and R(2,4) = 4. Now suppose for contradiction there is a red/blue coloring of $E(K_9)$ containing neither red K_3 nor blue K_4 . Fix a vertex v, and let r_v and b_v be the number of red and blue neighbors of v, respectively. First observe that $r_v \leq 3$ as otherwise by R(2,4) = 4 we can find in the red neighborhood of v a red edge (which together with v forms a red triangle) or a blue K_4 . Analogously, $b_v \leq R(3,3) - 1 = 5$. However, $r_v + b_v = 9 - 1 = 8$ since the graph is complete, so we conclude that $r_v = 3$ and $b_v = 5$. This applies to every vertex $v \in V(K_9)$ so the subgraph induced by red edges is 3-regular. But clearly, there is no 9-vertex 3-regular graph (the sum of the degrees must be even!).

c) Show that $R(4, 4) \le 18$.

Solution: We know from the lecture that $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell-1)$. Therefore,

$$R(4,4) \le R(3,4) + R(4,3) = 2 \cdot R(3,4) = 18.$$

2. Recall that $R_k(3) := R_k(3, 3, \ldots, 3)$ is the minimum integer *n* such that any *k*-coloring of $E(K_n)$ contains a monochromatic K_3 .

Prove that $R_k(3) \leq 3k!$ for any integer $k \geq 1$.

Solution: Induction on k. Clearly, the formula holds for k = 1 and k = 2 as well (R(3,3) = 6). Suppose k > 2 and fix any k-coloring of $E(K_{3k!})$. Let v be a vertex and $i \in \{1, \ldots, k\}$ be the most frequent color on the edges incident to v. Without loss of generality, i = k. Set N to be the set of vertices u such that $\{u, v\}$ has color k. We claim that $|N| \ge 3(k-1)!$ as otherwise the total number of vertices in $K_{3k!}$ would be at most

$$k \cdot ((3k-1)! - 1) + 1 = 3k! - (k-1) < 3k!.$$

Now either at least one edge with both endpoints in N has color k, in which case we are done, or, we can apply induction on the (k-1)-coloring of $K_{|N|}$ that is induced by the coloring of the edges inside N. Since $|N| \ge 3(k-1)!$, the induction hypothesis yields a monochromatic triangle inside N.

3. Let G be a 3-regular simple graph with no cut-edge, and let $e \in E(G)$ be an edge of G.

a) Show that G contains a perfect matching M_1 such that $e \in M_1$.

THIS IS A FIXED SOLUTION. The earlier solution here was wrong.

Let u and w be the two endpoints of e, and let H := G - u - w. It is enough to show that H has a perfect matching M', since M' + e will be a perfect matching of G that contains e.

Let V := V(G) and $W := V(H) = V \setminus \{u, w\}$. Suppose for contradiction H does not have a perfect matching. By Tutte's theorem, there exists $S_0 \subseteq W$ such that $odd_H(\overline{S_0}) > |S_0|$, where $\overline{S_0} = W \setminus S_0$. First, we observe that the

parity of $odd_H(\overline{S_0})$ and $|S_0|$ is the same. Indeed, recall that |V| is even and that

$$|V| - 2 = |W| = \sum_{\substack{C \text{ even component} \\ \text{ of } H[\overline{S_0}]}} |C| + \sum_{\substack{C \text{ odd component} \\ \text{ of } H[\overline{S_0}]}} |C| + |S_0|.$$

Therefore, $odd_H(\overline{S_0}) \ge |S_0| + 2$, and for $S := S_0 \cup \{u, w\}$ we have

$$odd_G(V \setminus S) = odd_H(\overline{S_0}) \ge |S_0| + 2 = |S|.$$

Now we look closer to the situation in G and the set of vertices S. The number of edges between S and $V \setminus S$ is at most 3(|S|-2) + 4 = 3|S| - 2 because u is adjacent to at most two vertices in $V \setminus S$ and the same holds also for v. On the other hand, there are at least |S| odd components in $G[V \setminus S]$. As in the proof of Petersen's theorem in the lecture, each such odd connected component must receive at least 3 edges from the vertices in S (only one edge would mean a cut-edge in G, only two edges violates the parity constraint). So the number of edges between S and $V \setminus S$ must be at least 3|S|; a contradiction.

b) Show that G contains a perfect matching M_2 such that $e \notin M_2$.

Solution: This immediately follows from (a). Let v be one of the endpoints of e and let f be one of the other two edges incident to v (chosen aribtrarily). A perfect matching M containing f guaranteed by (a) clearly cannot contain e.

4. Recall that for a simple graph G, the chromatic number $\chi(G)$ is the minimum number of colors needed to color the vertices of G so that for every edge e the endpoints of e receive two different colors.

Let G be a simple graph such that any two odd cycles C_1 and C_2 in G it holds that $V(C_1) \cap V(C_2) \neq \emptyset$. Prove that $\chi(G) \leq 5$.

Solution: If G contains no odd cycle, then G is bipartite and $\chi(G) \leq 2$. Otherwise, let C be an odd cycle of G of the shortest length. The subgraph induced by the vertices of C cannot contain any additional edges except the ones from the cycle, as otherwise we would have found a shorter odd cycle. On the other hand, let $W := V(G) \setminus V(C)$. If the induced subgraph G[W] would contain an odd cycle, say C', then we would have found two odd cycles in G such that $V(C) \cap V(C') = \emptyset$ violating the assumption on G. So G[W] is bipartite and can be colored with two colors, say $\{1, 2\}$. The vertices of C can be colored with three new colors, say $\{3, 4, 5\}$. So together this forms a proper 5-coloring of G.

5. A simple graph G = (V, E) is called *triangle-free* if no 3-vertex subgraph of G is isomorphic to K_3 .

Let G be a triangle-free simple graph with n vertices. Show that G contains an independent set of size $|\sqrt{n}|$. Deduce that $R(3, \ell) \leq \ell^2$.

Solution: Let Δ be the maximum degree of G. The neighborhood of any vertex $v \in V(G)$ must form an independent set (G is triangle-free!), so if $\Delta \geq \lfloor \sqrt{n} \rfloor$, then we are done. If $\Delta \leq \lfloor \sqrt{n} \rfloor - 1$, then by the greedy coloring algorithm G can be colored with $\Delta + 1 = \lfloor \sqrt{n} \rfloor \leq \sqrt{n}$ colors. Therefore, the largest color class, which is indeed an independent set, have size at least

$$\frac{n}{\sqrt{n}} = \sqrt{n} \ge \left\lfloor \sqrt{n} \right\rfloor.$$

For the second part, let $n := \ell^2$. Consider any red/blue coloring of $E(K_n)$ and let G be the *n*-vertex subgraph of K_n induced by the red edges. Either G contains a triangle, in which case we are done, or, by the previous G contains an independent set of size at least $\lfloor \sqrt{n} \rfloor = \ell$. The independent set in G corresponds to a blue K_ℓ in the coloring, so $R(3, \ell) \leq \ell^2$.