
MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #4: Ramsey theory, Matchings, Colorings

Due Wednesday, November 16th, 2016, 14:30

1. Recall that R(k, `) is the minimum integer n such that every red/blue coloring
of E(Kn) contains a red Kk or blue K`.

a) Construct a red/blue coloring of E(K8) such that the coloring contains neither
red K3 nor blue K4.

Solution: Consider the following red/blue coloring of E(K8) where only red
edges are drawn (i.e., the non-edges in the figure are the blue edges in the
coloring):
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Figure 1: The red subgraph of a red/blue coloring of E(K8) which shows that R(3, 4) > 8.

Clearly, there is no red triangle. A blue K4 corresponds to an independent
set of size 4 in the depicted graph. Such an independent set would contain
exactly two vertices from the outer 4-cycle. By symmetry, say the top-left
v1 and the right-bottom vertex v3. However, it is impossible to add 2 inner
vertices wi, wj so that {v1, v3, wi, wj} is independent.

b) Prove that R(3, 4) = 9.

Solution: By (a), it is enough to show that every red/blue coloring of E(K9)
contains a red K3 or blue K4. First, recall that R(3, 3) = 6 and R(2, 4) = 4.
Now suppose for contradiction there is a red/blue coloring of E(K9) containing
neither red K3 nor blue K4. Fix a vertex v, and let rv and bv be the number
of red and blue neighbors of v, respectively. First observe that rv ≤ 3 as
otherwise by R(2, 4) = 4 we can find in the red neighborhood of v a red



edge (which together with v forms a red triangle) or a blue K4. Analogously,
bv ≤ R(3, 3) − 1 = 5. However, rv + bv = 9 − 1 = 8 since the graph is
complete, so we conclude that rv = 3 and bv = 5. This applies to every vertex
v ∈ V (K9) so the subgraph induced by red edges is 3-regular. But clearly,
there is no 9-vertex 3-regular graph (the sum of the degrees must be even!).

c) Show that R(4, 4) ≤ 18.

Solution: We know from the lecture that R(k, `) ≤ R(k− 1, `) +R(k, `− 1).
Therefore,

R(4, 4) ≤ R(3, 4) +R(4, 3) = 2 ·R(3, 4) = 18.

2. Recall that Rk(3) := Rk(

k︷ ︸︸ ︷
3, 3, . . . , 3 ) is the minimum integer n such that any

k-coloring of E(Kn) contains a monochromatic K3.

Prove that Rk(3) ≤ 3k! for any integer k ≥ 1.

Solution: Induction on k. Clearly, the formula holds for k = 1 and k = 2 as well
(R(3, 3) = 6). Suppose k > 2 and fix any k-coloring of E(K3k!). Let v be a vertex
and i ∈ {1, . . . , k} be the most frequent color on the edges incident to v. Without
loss of generality, i = k. Set N to be the set of vertices u such that {u, v} has color
k. We claim that |N | ≥ 3(k − 1)! as otherwise the total number of vertices in K3k!

would be at most

k · ((3k − 1)!− 1) + 1 = 3k!− (k − 1) < 3k!.

Now either at least one edge with both endpoints in N has color k, in which case
we are done, or, we can apply induction on the (k − 1)-coloring of K|N | that is
induced by the coloring of the edges inside N . Since |N | ≥ 3(k− 1)!, the induction
hypothesis yields a monochromatic triangle inside N .

3. Let G be a 3-regular simple graph with no cut-edge, and let e ∈ E(G) be an
edge of G.

a) Show that G contains a perfect matching M1 such that e ∈M1.

THIS IS A FIXED SOLUTION. The earlier solution here was wrong.

Let u and w be the two endpoints of e, and let H := G− u−w. It is enough
to show that H has a perfect matching M ′, since M ′ + e will be a perfect
matching of G that contains e.

Let V := V (G) and W := V (H) = V \ {u,w}. Suppose for contradiction H
does not have a perfect matching. By Tutte’s theorem, there exists S0 ⊆ W
such that oddH(S0) > |S0|, where S0 = W \ S0. First, we observe that the



parity of oddH(S0) and |S0| is the same. Indeed, recall that |V | is even and
that

|V | − 2 = |W | =
∑

C even component
of H[S0]

|C| +
∑

C odd component
of H[S0]

|C| + |S0|.

Therefore, oddH(S0) ≥ |S0|+ 2, and for S := S0 ∪ {u,w} we have

oddG(V \ S) = oddH(S0) ≥ |S0|+ 2 = |S|.

Now we look closer to the situation in G and the set of vertices S. The number
of edges between S and V \S is at most 3(|S| − 2) + 4 = 3|S| − 2 because u is
adjacent to at most two vertices in V \S and the same holds also for v. On the
other hand, there are at least |S| odd components in G[V \S]. As in the proof
of Petersen’s theorem in the lecture, each such odd connected component must
receive at least 3 edges from the vertices in S (only one edge would mean a
cut-edge in G, only two edges violates the parity constraint). So the number
of edges between S and V \ S must be at least 3|S|; a contradiction.

b) Show that G contains a perfect matching M2 such that e /∈M2.

Solution: This immediately follows from (a). Let v be one of the endpoints of
e and let f be one of the other two edges incident to v (chosen aribtrarirly). A
perfect matching M containing f guaranteed by (a) clearly cannot contain e.

4. Recall that for a simple graph G, the chromatic number χ(G) is the minimum
number of colors needed to color the vertices of G so that for every edge e the
endpoints of e receive two different colors.

Let G be a simple graph such that any two odd cycles C1 and C2 in G it holds that
V (C1) ∩ V (C2) 6= ∅. Prove that χ(G) ≤ 5.

Solution: If G contains no odd cycle, then G is bipartite and χ(G) ≤ 2. Otherwise,
let C be an odd cycle of G of the shortest length. The subgraph induced by the
vertices of C cannot contain any additional edges except the ones from the cycle,
as otherwise we would have found a shorter odd cycle. On the other hand, let
W := V (G) \V (C). If the induced subgraph G[W ] would contain an odd cycle, say
C ′, then we would have found two odd cycles in G such that V (C) ∩ V (C ′) = ∅
violating the assumption on G. So G[W ] is bipartite and can be colored with two
colors, say {1, 2}. The vertices of C can be colored with three new colors, say
{3, 4, 5}. So together this forms a proper 5-coloring of G.

5. A simple graph G = (V,E) is called triangle-free if no 3-vertex subgraph of G is
isomorphic to K3.

Let G be a triangle-free simple graph with n vertices. Show that G contains an
independent set of size

⌊√
n
⌋
. Deduce that R(3, `) ≤ `2.



Solution: Let ∆ be the maximum degree of G. The neighborhood of any vertex
v ∈ V (G) must form an independent set (G is triangle-free!), so if ∆ ≥

⌊√
n
⌋
, then

we are done. If ∆ ≤
⌊√

n
⌋
− 1, then by the greedy coloring algorithm G can be

colored with ∆ + 1 =
⌊√

n
⌋
≤
√
n colors. Therefore, the largest color class, which

is indeed an independent set, have size at least

n√
n

=
√
n ≥

⌊√
n
⌋
.

For the second part, let n := `2. Consider any red/blue coloring of E(Kn) and let
G be the n-vertex subgraph of Kn induced by the red edges. Either G contains a
triangle, in which case we are done, or, by the previous G contains an independent
set of size at least

⌊√
n
⌋

= `. The independent set in G corresponds to a blue K`

in the coloring, so R(3, `) ≤ `2.


