
MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #5: Edge-colorings, Line graphs, Planar graphs

Due Wednesday, November 30th, 2016, 14:30

1a) Show that the Petersen graph has no 3-edge-coloring. (2 points)

Solution: Suppose for a contradiction the Petersen graph is 3-edge-colorable. Up to the
permutation of the colors, the outer five-cycle must be colored as in the left-most picture.
That also uniquely determines the colors of the other five edges incident to to the vertices
of the outer cycle; see the middle picture. However, this now forces the two bold edges in
the right-most picture to be both blue; a contradiction.

1b) Does the Petersen graph have a Hamilton cycle? (1 point)

Solution: No! Suppose there is a Hamilton cycle C in the Petersen graph, and let M
be the edges of the Persen graph that are not contained in C. It follows that M is a
perfect matching. On the other hand, the Petersen graph has 10 vertices, so we can split
the edges of C into two perfect matchings N and O. It follows that M , N and O form a
3-edge-coloring of the Petersen graph, a contradiction with the part (a).

1c) Find a 4-edge-coloring of the Petersen graph. (1 point)

Solution: See the 4-edge-coloring below.



2. For n ≥ 2, use the following steps to determine χ′(Kn) and construct an optimal edge-
coloring.

a) For any odd integer n ≥ 3, show that the complete graph Kn does not have an edge-coloring
with ∆(Kn) = n− 1 colors.

Solution: Indeed, Kn is an (n− 1)-regular graph, so if it has an edge-coloring with n− 1
colors, then each color class must form a perfect matching. But for n odd, Kn cannot
have a perfect matching.

b) For any odd integer n ≥ 3, prove that if c is an edge-coloring of Kn with n colors, then
each color class of c contains (n− 1)/2 edges.

(Note that χ′(Kn) ≤ n by Vizing’s Theorem.)

Solution: Consider an edge-coloring of Kn with n colors. Each color class is a matching,
and since n is odd, any matching of Kn has size at most (n− 1)/2 edges. However, each
edge of Kn has one of the n colors and since(

n

2

)
= n · n− 1

2
,

we conclude that the bound (n− 1)/2 on the size of a color class must be tight.

c) For any even integer n ≥ 2, show that χ′(Kn) = n− 1.

Solution: Consider any edge-coloring of Kn−1 using n − 1 colors. From the part (b),
we know that each color class contains (n − 2)/2 edges. In other words, for each color
i ∈ {1, . . . , n − 1}, there is exactly one vertex vi that is not incident to any edge colored
with i. Moreover, for different colors i 6= j, it holds that vi 6= vj . Adding a new vertex
vn and coloring the edge {vi, vn} with the color i for all i ∈ {1, . . . , n − 1} yields an
(n− 1)-edge-coloring of Kn.

d) For any integer n ≥ 2, explicitly construct an edge-coloring of Kn with χ′(Kn) colors.

Solution: As the hint suggested, we should show that for n being odd and V (Kn) =
{0, . . . , n− 1}, coloring the edge {i, j} with (i+ j) mod n yields an edge-coloring of Kn.
Suppose for a contradiction that there are two edges e1 6= e2 incident to some vertex i
that are both colored with the same color, say x ∈ {0, . . . , n − 1}. Let e1 = {i, j} and
e2 = {i, k}. Since (i + j) ≡ x ≡ (i + k) mod n, we have j ≡ k mod n. However, that
means that j = k contradicting e1 6= e2.

If n is even, we let n′ := n − 1 and V (Kn) = {0, . . . , n′ − 1, n′}. If i, j ∈ {0, . . . , n′ − 1},
we color the edge {i, j} with (i + j) mod n′, and the remaining edges {i, n′}, where
i ∈ {0, . . . , n′ − 1}, we color with (2i) mod n′. Since n′ is odd, it follows that 2i 6= 2j
mod n′ for any i, j ∈ {0, . . . , n′ − 1} with i 6= j.



3. Let G = (V,E) be a loopless multigraph. Recall that a line graph of G, which we denote by
L(G), is a simple graph H with the vertex set E, and two vertices e and f of H are adjacent if
and only if the corresponding two edges in G are incident to the same vertex. In other words,
H = (E,F ) where F = {{e, f} : e ∩ f 6= ∅}.

a) Let G = (V,E) be a loopless connected multigraph with an even number of edges, i.e., |E|
is even. Show that the graph L(G) has a perfect matching.

Solution: Suppose for contradiction L(G) does not have a perfect matching. By Tutte’s
theorem, there exists S ⊆ E such that k > |S| for k := oddL(G)(E \ S). It follows that
the parity of k is the same as the parity of |S|, hence k ≥ |S|+ 2. Now look back to the
graph G. The connected components of the subgraph of L(G) induced by E \ S are in
one-to-one correspondence with the connected components of G′ := (V,E \S). So G′ has
at least k connected components. However, each edge from S can connect at most two
components of G′ and since |S| < k − 1, G cannot be connected.

b) Let G = (V,E) be a loopless connected multigraph with an odd number of edges. Show

that L(G) has a matching of size |E|−12 .

Solution: Simply add an aribtrary edge to G connecting two different vertices and use
the previous part. The perfect matching M in the line graph of the new graph contains

a matching M ′ ⊆ E of size |E|−12 .

Alternatively, if G is not a tree, there is e ∈ E such that G′ := G − e is connected. On
the other hand, if G is a tree, then let v be a leaf and G′ := G − v. In both cases, G′ is
connected |E(G′)| is even, and L(G′) is a subgraph of L(G), so we use the part a).

4. Let G = (V,E) be a planar graph drawn in the plane. Suppose that there exists a vertex v
so that v belongs to the boundary of every region. Show that

α(G) ≥ |V | − 1

2
.

Solution: Let G′ := G − v. By the assumption, we have Reg(G′) = 1. So G′ is a forest and
hence two-colorable. The larger color class has size k ≥ |V (G′)|/2 hence

α(G) ≥ α(G′) ≥ |V (G′)|
2

=
|V | − 1

2
.

5. Recall a simple graph G is called outerplanar if it can be drawn in the plane so that every
vertex is incident with the infinite region.
Let G = (V,E) be a connected outerplanar graph with |V | ≥ 3.

a) Prove that G contains two vertices of degree at most 2. (1 point)

Solution: If G has 3 vertices, then every vertex has the degree at most 2. For an
outerplanar G on at least 4 vertices, we prove the following stronger lemma:

Lemma. G contains at least two non-adjacent vertices of degree at most 2.

We proceed by induction on n. If the number of vertices is equal to 4, then we know from
the lecture that G has at most 2 · 4− 3 = 5 edges. In particular, G is not complete and it
contains two non-adjacent vertices. Both of these vertices have clearly degree at most 2.

Now suppose |V | ≥ 5. If G is disconnected, then G has at least two connected components
and each component of G contains at least one vertex of degree at most 2 (if the number of



the vertices in the component is at most 3, then the statement follows trivially, otherwise
we use the induction hypothesis). If G contains a cut-vertex v, then let C1 be one of the
connected components of G− v, V1 := V (C1)∪ {v} and V2 := V \ V (C1). Let G1 and G2

be the subgraph of G induced by V1 and V2, respectively. We claim that both G1 and G2

contains a vertex v1 6= v and v2 6= v, respectively, of degree at most 2 (clearly, vi has the
same degree in Gi and G for i ∈ {1, 2}). Indeed, for both i = 1 and i = 2, if |Vi| ≤ 3,
then every vertex of Gi has degree at most 2, so just select an arbitrary vi ∈ Vi \ {v}. On
the other hand, if |Vi| ≥ 4, then by the induction hypothesis Gi contains two vertices of
degree at most 2, so let vi be one of the vertices that is not v.

It remains to analyze the case that G is 2-connected. Recall from the lecture that 2-
connected outerplanar graphs contains a Hamiltonian cycle C. Now, if E = E(C), then
G is 2-regular and we can select any two non-adjacent vertices of G. Otherwise, let
u and w be two adjacent vertices in G such that {u,w} /∈ E(C). Clearly, G − {u,w} is
disconnected, and let C1 be one of the corresponding connected components. Analogously
to the previous case, we set V1 := V (C1)∪{u,w} and V2 := V \V (C1), and let G1 := G[V1]
and G2 := G[V2]. Now we claim for both i = 1 and i = 2, Gi contains a vertex vi of
degree at most 2 that is neither u nor w. Indeed, if |Vi| = 3, then we choose the third
vertex in Vi to be vi. If |Vi| ≥ 4, then Gi contains at least two non-adjacent vertices x
and y of degree at most two. Since u and w are adjacent, it follows that {x, y} 6= {u,w}
and we choose vi ∈ {x, y} \ {u,w} arbitrarily.

b) Is it true that G necessarily contains three vertices of degree at most 2? (1 point)

Solution: No! See the following graph:

c) Without using the 4-Color Theorem, show that χ(G) ≤ 3. (2 points)

Solution. The part (a) yields that G is 2-degenerate so indeed, χ(G) ≤ 3.

Bonus question. This question is worth additional 5 points on top of the standard 20 points.
Show that a graph G is outerplanar if and only if G contains no K4-minor and no K2,3-minor.

Solution. Consider the graph G+ which is obtained from G by adding a new vertex v and
connecting v to all the vertices of G. First of all, if G is outerplanar, we claim that G+ is
planar. Indeed, consider an outerplanar drawing of G in the plane, draw v in the infinite region,
and simply connect v to all the vertices of G so that the edges do not cross. We have found a
drawing of G+ so it is planar. However, if G would contain either a minor of K4 or a minor
K2,3, we can easily find a minor of K5 or K3,3 in G+, contradicting Kuratowski’s theorem.
Now we essentially flip this argument in order to show the other implication. If G does not
contain a minor of K4 or K2,3, then G+ contains neither a minor of K5 nor K3,3 so by Ku-
ratowski’s theorem, G+ is planar. If a drawing of G+ is such that v is not on the boundary
of the infinite region, then consider any region R with v on its boundary and apply so-called
circle inversion to obtain a new drawing of G+ in the plane so that everything that was drawn
outside of R is now inside. In this way, we obtained a drawing D of G+ with v on the boundary
of the infinite region, and it immediately follows that if delete v and all of the edges incident to
v from D, we obtain an outerplanar drawing of G. So in particular, G is outerplanar.


