MATH 350: Graph Theory and Combinatorics. Fall 2016.
Assignment #5: Edge-colorings, Line graphs, Planar graphs

Due Wednesday, November 30th, 2016, 14:30

1a)

1b)

1c)

Show that the Petersen graph has no 3-edge-coloring. (2 points)

Solution: Suppose for a contradiction the Petersen graph is 3-edge-colorable. Up to the
permutation of the colors, the outer five-cycle must be colored as in the left-most picture.
That also uniquely determines the colors of the other five edges incident to to the vertices
of the outer cycle; see the middle picture. However, this now forces the two bold edges in
the right-most picture to be both blue; a contradiction.

Does the Petersen graph have a Hamilton cycle? (1 point)

Solution: No! Suppose there is a Hamilton cycle C in the Petersen graph, and let M
be the edges of the Persen graph that are not contained in C. It follows that M is a
perfect matching. On the other hand, the Petersen graph has 10 vertices, so we can split
the edges of C into two perfect matchings N and O. It follows that M, N and O form a
3-edge-coloring of the Petersen graph, a contradiction with the part (a).

Find a 4-edge-coloring of the Petersen graph. (1 point)

Solution: See the 4-edge-coloring below.



2.  For n > 2, use the following steps to determine x’(K,) and construct an optimal edge-
coloring.

a) For any odd integer n > 3, show that the complete graph K, does not have an edge-coloring
with A(K,) =n — 1 colors.

Solution: Indeed, K, is an (n — 1)-regular graph, so if it has an edge-coloring with n —1
colors, then each color class must form a perfect matching. But for n odd, K, cannot
have a perfect matching.

b) For any odd integer n > 3, prove that if ¢ is an edge-coloring of K,, with n colors, then
each color class of ¢ contains (n — 1)/2 edges.
(Note that x'(K,) <n by Vizing’s Theorem.)

Solution: Consider an edge-coloring of K,, with n colors. Each color class is a matching,
and since n is odd, any matching of K, has size at most (n — 1)/2 edges. However, each
edge of K, has one of the n colors and since
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we conclude that the bound (n — 1)/2 on the size of a color class must be tight.

¢) For any even integer n > 2, show that x'(K,) =n — 1.

Solution: Consider any edge-coloring of K,,_; using n — 1 colors. From the part (b),
we know that each color class contains (n — 2)/2 edges. In other words, for each color
i €{l,...,n — 1}, there is exactly one vertex v; that is not incident to any edge colored
with 7. Moreover, for different colors i # j, it holds that v; # v;. Adding a new vertex
vy, and coloring the edge {v;,v,} with the color i for all i € {1,...,n — 1} yields an
(n — 1)-edge-coloring of K.

d) For any integer n > 2, explicitly construct an edge-coloring of K,, with x'(K,) colors.

Solution: As the hint suggested, we should show that for n being odd and V(K,,) =
{0,...,n— 1}, coloring the edge {7,j} with (i + j) mod n yields an edge-coloring of K.
Suppose for a contradiction that there are two edges e; # es incident to some vertex 14
that are both colored with the same color, say = € {0,...,n —1}. Let ey = {i,j} and
es = {i,k}. Since (i +j) =z = (i + k) mod n, we have j = k mod n. However, that
means that j = k contradicting e # es.

If n is even, we let n’ :=n —1 and V(K,) ={0,...,n = 1,n'}. Ifi,j € {0,...,n — 1},
we color the edge {i,j} with (i + j) mod n/, and the remaining edges {i,n'}, where
i € {0,...,n' — 1}, we color with (2¢) mod n'. Since n’ is odd, it follows that 2i # 2j
mod n’ for any 4,j € {0,...,n — 1} with i # j.



3. Let G = (V, E) be a loopless multigraph. Recall that a line graph of G, which we denote by
L(G), is a simple graph H with the vertex set F, and two vertices e and f of H are adjacent if
and only if the corresponding two edges in G are incident to the same vertex. In other words,
H = (E,F) where F = {{e, f}:en f # 0}.

a) Let G =(V,E) be a loopless connected multigraph with an even number of edges, i.e., |EF]
is even. Show that the graph L(G) has a perfect matching.

Solution: Suppose for contradiction L(G) does not have a perfect matching. By Tutte’s
theorem, there exists S C E such that k& > |S]| for k := oddp)(E \ S). It follows that
the parity of k is the same as the parity of |S|, hence k > |S| + 2. Now look back to the
graph G. The connected components of the subgraph of L(G) induced by E \ S are in
one-to-one correspondence with the connected components of G' := (V, E\ S). So G’ has
at least k connected components. However, each edge from S can connect at most two
components of G’ and since |S| < k — 1, G cannot be connected.

b) Let G = (V, E) be a loopless connected multigraph with an odd number of edges. Show
that L(G) has a matching of size |E|T_1
Solution: Simply add an aribtrary edge to G connecting two different vertices and use
the previous part. The perfect matching M in the line graph of the new graph contains
a matching M’ C E of size |E‘Tfl
Alternatively, if G is not a tree, there is e € F such that G’ := G — ¢ is connected. On
the other hand, if G is a tree, then let v be a leaf and G’ := G — v. In both cases, G’ is
connected |E(G')| is even, and L(G’) is a subgraph of L(G), so we use the part a).

4. Let G = (V, E) be a planar graph drawn in the plane. Suppose that there exists a vertex v
so that v belongs to the boundary of every region. Show that

a(G) > ‘V‘T_l

Solution: Let G’ := G — v. By the assumption, we have Reg(G’') = 1. So G’ is a forest and
hence two-colorable. The larger color class has size k > |V(G’)|/2 hence
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5. Recall a simple graph G is called outerplanar if it can be drawn in the plane so that every
vertex is incident with the infinite region.
Let G = (V, E) be a connected outerplanar graph with V| > 3.

a) Prove that G contains two vertices of degree at most 2. (1 point)

Solution: If G has 3 vertices, then every vertex has the degree at most 2. For an
outerplanar GG on at least 4 vertices, we prove the following stronger lemma:

Lemma. G contains at least two non-adjacent vertices of degree at most 2.

We proceed by induction on n. If the number of vertices is equal to 4, then we know from
the lecture that G has at most 2-4 —3 = 5 edges. In particular, G is not complete and it
contains two non-adjacent vertices. Both of these vertices have clearly degree at most 2.

Now suppose |V| > 5. If G is disconnected, then G has at least two connected components
and each component of G contains at least one vertex of degree at most 2 (if the number of



the vertices in the component is at most 3, then the statement follows trivially, otherwise
we use the induction hypothesis). If G contains a cut-vertex v, then let Cy be one of the
connected components of G — v, V1 := V(Cq)U{v} and Vo := V' \ V(C4). Let G; and Gs
be the subgraph of G induced by V; and Vs, respectively. We claim that both G; and G4
contains a vertex v1 # v and vy # v, respectively, of degree at most 2 (clearly, v; has the
same degree in G; and G for ¢ € {1,2}). Indeed, for both ¢ = 1 and ¢ = 2, if |V;| < 3,
then every vertex of G; has degree at most 2, so just select an arbitrary v; € V; \ {v}. On
the other hand, if |V;| > 4, then by the induction hypothesis G; contains two vertices of
degree at most 2, so let v; be one of the vertices that is not v.

It remains to analyze the case that G is 2-connected. Recall from the lecture that 2-
connected outerplanar graphs contains a Hamiltonian cycle C'. Now, if E = E(C), then
G is 2-regular and we can select any two non-adjacent vertices of G. Otherwise, let
u and w be two adjacent vertices in G such that {u,w} ¢ E(C). Clearly, G — {u,w} is
disconnected, and let C; be one of the corresponding connected components. Analogously
to the previous case, we set V1 := V(C1)U{u,w} and V5 := V\V(C4), and let G1 := G[V4]
and Gy := G[V32]. Now we claim for both ¢ = 1 and ¢ = 2, G; contains a vertex v; of
degree at most 2 that is neither u nor w. Indeed, if |V;| = 3, then we choose the third
vertex in V; to be v;. If |[V;] > 4, then G; contains at least two non-adjacent vertices x
and y of degree at most two. Since v and w are adjacent, it follows that {x,y} # {u,w}
and we choose v; € {z,y} \ {u,w} arbitrarily.

b) Is it true that G necessarily contains three vertices of degree at most 27 (1 point)

Solution: No! See the following graph:

¢) Without using the 4-Color Theorem, show that x(G) < 3. (2 points)
Solution. The part (a) yields that G is 2-degenerate so indeed, x(G) < 3.

Bonus question. This question is worth additional 5 points on top of the standard 20 points.
Show that a graph G is outerplanar if and only if G contains no K4-minor and no K3 s-minor.

Solution. Consider the graph GT which is obtained from G by adding a new vertex v and
connecting v to all the vertices of G. First of all, if G is outerplanar, we claim that GV is
planar. Indeed, consider an outerplanar drawing of GG in the plane, draw v in the infinite region,
and simply connect v to all the vertices of G so that the edges do not cross. We have found a
drawing of G so it is planar. However, if G would contain either a minor of K, or a minor
K> 3, we can easily find a minor of K5 or K33 in G, contradicting Kuratowski’s theorem.
Now we essentially flip this argument in order to show the other implication. If G does not
contain a minor of Ky or Ko 3, then G* contains neither a minor of K5 nor K33 so by Ku-
ratowski’s theorem, GV is planar. If a drawing of G is such that v is not on the boundary
of the infinite region, then consider any region R with v on its boundary and apply so-called
circle inversion to obtain a new drawing of G in the plane so that everything that was drawn
outside of R is now inside. In this way, we obtained a drawing D of G* with v on the boundary
of the infinite region, and it immediately follows that if delete v and all of the edges incident to
v from D, we obtain an outerplanar drawing of GG. So in particular, G is outerplanar.



